CAL-CORE Network: On-Farm Research to Improve Strawberry / Vegetable Rotation Systems in Coastal California.
Carol Shennan1, Joji Muramoto2, Alex Gershenson3, Graeme Baird2, Margherita Zavatta2, Lucinda Toyama2, Diego Nieto4, Janet Bryer2, Marc Los Huertos5, Stefanie Kortman6, Karen Klonsky7, Mark Gaskell8, Steve Koike8 and Richard Smith8

Abstract
The California Collaborative Organic Research and Extension Network (CAL-CORE) is a group of researchers, farmers, extension professionals, industry and non-profit organizations dedicated to furthering research into organic strawberry and vegetable production in coastal California. Formed nine years ago, we have worked on a variety of fertility, pest and disease management issues facing organic growers. Currently, our main effort centers on vegetable/strawberry rotations and different options for fertility and disease management.

In a replicated field trial, we compare treatments across a range of sustainability criteria: crop yield, nitrogen cycling and losses, greenhouse gas emissions, disease incidence, biocontrol of insect pests, soil carbon pools, and economics. Ultimately a full life cycle analysis for each rotation system will be developed to assess their overall environmental footprint. The split-split plot designed trial compares rotation length of strawberries—four- and two-year—as main plots, type of rotational vegetable crops — “disease suppressive” Verticillium dahliae non-host broccoli and “less suppressive” V. dahliae host lettuce — as sub plots. Fertility management options included control with no fertility inputs, legume/cereal cover crop only, legume/cereal cover crop plus compost and feather meal, and cereal cover crop plus mustard seed meal as treatments. In the two legume/cereal cover cropped treatments, Anaerobic Soil Disinfestation (ASD)—a promising option for controlling a range of soil borne diseases—is used for disease management prior to planting strawberries. Six network farmers also chose a sub-set of these treatments to test on their farms and compare to their own management practices.

The study is in its fourth year and all treatments at all locations are now planted to strawberries. Preliminary data on system productivity, nitrogen cycling greenhouse gas emissions, soil carbon, plant disease and biocontrol of cabbage aphids was presented. This project intends to provide farmers with tools to improve their production systems, meet water quality regulations, and quantify climate-related impacts of these intensive organic systems.

1University of California, Santa Cruz, cshennan@ucsc.edu.
2 University of California, Santa Cruz.
3San Jose State University.
4Formerly with University of California, Santa Cruz, currently with Driscoll Strawberry Associates, Inc.
5Formerly at California State University Monterey Bay; currently with Pomona College.
6California State University Monterey Bay
7University of California, Davis.
8University of California Cooperative Extension.