Management for High Quality Wheat and Ancient Grain Production in the Northeast

David Benscher, Greg Roth, Elizabeth Dyck

February 12, 2013

http://www.extension.org/organic_production

Elizabeth Dyck, OGRIN

1

This presentation is supported through a USDA-NIFA OREI PROJECT:

- Value-added grains for local and regional food systems
- Project Partners: Cornell University, Penn State University, OGRIN, NOFA-NY, PASA, Northern Plains Sustainable Agriculture Society, Greenmarket, Oregon State University, and North Dakota State University

VALUE-ADDED GRAINS FOR LOCAL AND REGIONAL FOOD SYSTEMS : OBJECTIVES

- Evaluate germplasm of potentially high market value small grains: heritage wheat, emmer, spelt, and einkorn
- Develop management recommendations
- Optimize grain quality through identifying management techniques
- Document a variety of approaches to grain dehulling and milling
- Investigate strategies for accessing regional markets through "active" learning events

VALUE-ADDED GRAINS FOR LOCAL AND REGIONAL FOOD SYSTEMS : OBJECTIVES

- Evaluate germplasm of potentially high market value small grains: heritage wheat, emmer, spelt, and einkorn
- × Develop management recommendations
- Optimize grain quality through identifying management techniques
- Document a variety of approaches to grain dehulling and milling
- Investigate strategies for accessing regional markets through "active" learning events

Grain quality webinar outline

- Common wheat quality issues
- Critical grain quality parameters and testing
- Management for high-quality wheat and ancient grains
 - Sourcing seed Crop rotation Fertility management Field preparation Planting dates/rates

Weed management Harvesting Seed cleaning Storage

Common grain quality issues

- · Low protein (bread wheat)
- Off-flavors
- Stones
- Moldy grain
- Sprouting in the head/low falling number
- Insect damage
- Diseased seed
- →Multiple causes, but in most cases, good management can avoid or minimize these issues.

Critical grain quality parameters: milling & baking

- Protein content (bread wheat): 11.5-12.5%
- Falling number
- a measure of sprouting damage in the grain
- Falling number of less than 200 seconds: poor quality products: bread with poor texture, mushy pasta
- Falling number above 300: Good
- Vomitoxin: Less than 1 ppm in the finished product
- →Buyers will require, at minimum, results of a vomitoxin test.

Critical grain quality parameters, cont.

Malting

- Lower protein: preferred 9-11%
- High germination (95% or above)
- Falling number as for milling
- Plump kernels
- Vomitoxin: May allow more than 1ppm

Distilling

- Lower protein: ~8-10%
- Vomitoxin: May allow more than 1 ppm

Identification	Grade and Kind	FN	VOM		Remarks
State-	HRS	409.0	0.0	14.4	VOMO= 1.5.
	HRW	344.0	0.0	8.7	VOMO= 0.0.
Red Fife 1	HRS	423.0	0.0	15.2	VOMO= 0.4.
Red Fife 4	HRS	409.0	0.0	15.6	VOMO= 0.4.
Spelts	SPELTS	414.0	0.0	13.9	VOMO= 0.3.
Average		399.8	0.0	13.6	
	Cost at this la Protein: \$3 Falling Numb)		

Grain quality testing

- Test for vomitoxin, protein, falling number
- Collect representative sample
- Send to third-party lab
 - University of Vermont: www.uvm.edu/extension/cropsoil/cereal-graintesting-lab
 - USDA Agency directory: http://archive.gipsa.usda.gov/aboutus/oadir.htm#desist

WHY BUY CERTIFIED SEED?

Seed Certification is voluntary in NY

Added expense in production of seed

Higher quality standard may be difficult to meet

Certified Seed Standards

1 NYCRR, Parts 96-118

Limited Generation (Approved Planting Stocks = Pedigree, Provenance).
 Field standards

- Isolation, rotation, weeds (prohibited and restricted)
- Genetic identity
- Genetic purity (other variety, crop)
- Diseases
- Seed Standards
 - Genetic identity, purity
 - Weed seed (esp. prohibited weed species)
 - Inert Matter
 - Germination
- ✓ Post Harvest Growout or Testing
- ✓ Grade Requirements

- ✓ Well adapted to region
- ✓ Disease tolerance
- ✓ Sprout resistant
- ✓ Lodging resistant
- ✓ Good Quality Characteristics
- Check public Varietal Trials in your region.
 - http://smallgrains.cals.cornell.edu
 - http://extension.psu.edu/small-
 - grains/trial-reports

012 OI	REI Spring	Wheat	Summ	ary - Co	rnell (2	location	ns) an	d Penn S
Entry No.	Entry Name	Yield kg/ha	Yield Rank	Test Wt kg/hl	Test Wt Rank	Height	class	Heading Date (June)
1	Stoa	2357	11	73.8	16	83	HRS	11
2	Red Fife	1727	19	74.5	15	117	HRS	13
3	RB07	2727	4	74.8	12	85	HRS	9
4	ND735	2652	5	77.9	2	91	HRS	11
5	Ada	2179	16	76.8	4	83	HRS	11
6	MN00261-4	2607	7	77.0	3	85	HRS	11
7	Tom**	2463	8	76.0	7	92	HRS	10
8	MN06078W	2744	3	74.5	14	93	SWS	10
9	Steele	2816	1	76.2	5	90	HRS	10
10	MN05214-3	2274	13	76.1	6	82	HRS	11
11	Sabin**	2785	2	75.5	9	84	HRS	10
12	Louise	2220	15	71.9	21	90	SWS	13
13	MN06079W	2448	9	72.1	20	81	SWS	7
14	Glenn**	2325	12	79.6	1	93	HRS	7
15	Ulen	2621	6	75.0	11	91	HRS	8
16	Reed	2146	17	70.6	22	79	SWS	11
17	Grandin	2379	10	75.4	10	90	HRS	11
18	McNeal	2244	14	74.7	13	90	HRS	13
19	Thatcher	1474	20	72.9	18	112	HRS	16
20	AC Barrie	2071	18	75.6	8	98	HRS	12
21	Mida	1329	21	73.7	17	112	HRS	14
22	Ceres	1280	22	72.6	19	106	HRS	15

Problems Sourcing Quality Seed

Seed Saving

-Public varieties maintained year after year on farms, without methods in place for maintaining variety purity.

✓ Scale

 Production – Niche market, while potentially lucrative may not warrant enough for Certified seed production. Potential high cost and low return for some of the heritage varieties.

-Much higher cost for production of Certified seed on small acreage.

Resources for Sourcing Quality Seed

Association of Official Seed Certifying Agencies (AOSCA) http://www.aosca.org/index.htm

Northeast Members

- NEW YORK SEED IMPROVEMENT PROJECT Alan Westra Wheat, Barley, & Oats
- MAINE DEPARTMENT OF AGRICULTURE
- · Oats & Barley VERMONT DEPARTMENT OF AGRICULTURE
- No grains
- **~OHIO SEED IMPROVEMENT ASSOCIATION** Wheat, Barley, & Oats

Resources for Sourcing Quality Seed Double Certified					
✓ LakeFree	York Seed Improvement Program view Organic Grain, Penn Yan, NY ederick Soft White Winter Wheat Ime and Esker Oat	New York CEATFIED SEED			

- ✓ Albert Lea Seed, Albert Lea, MN - Glenn, RB07, & Prosper Hard Red Spring Wheat
- ✓ Johnny's Selected Seed, Fairfield, ME Glenn Hard Red Spring

CROP ROTATIONS

- Crop rotations can play a key role in limiting disease, reduce weeds and supply nitrogen to small grain
- Rotations should also be designed for crops to complement each other ex.:
 - + Corn-soybeanswheat/clover
 + Corn-oats-wheat/clover

Winter Grains

- Ideal preceding crops
 + Oats
 - + Soybeans, Dry beans,+ Vegetable crops
 - Vegetable crops
 Clover/Alfalfa
- × Less desirable
 - + Corn
 - + Grass hay
- Undesirable
- + Wheat, barley, rye

CROP ROTATIONS

- Crop rotations can play a key role in limiting disease, reduce weeds and supply nitrogen to small grain
- Weed control is more difficult for spring grains
- Spring grains can benefit from residual N from corn or tilled legume hay fields

Spring Grains

- × Ideal preceding crops
 - + Clover/Alfalfa + Legume cover crops
 - + Legume co + Corn
 - + Potatoes
 - Less desirable
 - Soybeans
 - Grass hay
 - Undesirable
 - + Wheat, barley, or rye

FERTILITY

Winter Wheat and Spelt

- Nitrogen is critical for tillering, head development and grain protein
- Rotations with legumes, manures, esp. poultry and organic fertilizers are key N sources
- × Avoid excessive reliance on manures
- Adjust rates based on rotation
- Manure in fall or late winter
 Rates
 + 50 to 75 lb total N in
 - manure in fall is typical
 - + 2nd application of 50 lb in late winter if necessary
- Spring topdress can add to grain protein (Cost?)
- Spelt is less responsive than wheat (avoid lodging)

FERTILITY

Spring Wheat

- Preplant manure or fertilizer applications can complement residual N from corn or legumes
- Often about 70 lb N as total N in manure applied preplant has resulted in good success if no legumes

Heritage wheats

- Similar approach to modern wheats
- Some varieties may be prone more lodging
- May be appropriate to be more conservative on N rates for some varieties
- * We are looking at this as part of our objective

FERTILITY

Emmer and Einkorn

- Less N responsive than wheat
- Manure is likely not necessary following a good legume cover crop

 One of our project goals is to address this issue

FERTILITY

- Phosphorous and Potassium and soil pH are also important
- × Monitor with soil testing
- Straw removal can deplete potassium quickly – avoid if possible unless it will be reapplied in some form (manure or compost)

FIELD PREPARATION

- × Till fields well in advance of planting if possible
- × Perform secondary tillage immediately prior to planting to kill emerged weeds
- Avoid overworking soils and destroying soil structure

PLANTING DATE

- × Timely planting is critical for tiller development and good yields
- Planting too early can increase diseases such as powdery mildew and barley yellow dwarf
- Insects such as Hessian fly and aphids can be an issue with early planting
- × Plant winter wheat and spelt as soon after the Hessian Fly free date if possible
- × Plant spring wheat, emmer and einkorn as soon as feasible in the spring- often late March through mid- April in the Northeast

SEEDING RATES

- × Wheat: 120 to 150 lb/a × Heritage Wheat: Lower of seed (2-2.5 bu/a)
 - At 12000 seeds/pound, this results in 1.4 to 1.8 million seeds/acre
 - 19 to 24 seeds/foot in 7 inch rows
 - Increase seeding rates by 10%/week if seeding is delayed past fly free date
 - by more than two weeks Seed spring wheat at 2.5 bu/acre
- seeding rates may be better for some lines
 - × In one Cornell study, 47 lb/a was preferable to 95 lb/a with many varieties yielding more and lodging less at the lower rate

SEEDING RATES Speit: In the hull: 150 lb/a Dehulled: 120 lb/a NDSU: increasing from 50-100 lb/a resulted in 200 lb/a resulted in 200 lb/a higher yields In high fertility fields where lodging is anticipated, seeding rates could be reduced to 75 or 50 lb/a Photos Courtesy NDSU

HULLED VS. DEHULLED SEED

× Hulled seeds

- + More readily available
- Often germinates more quickly
- + Fewer actual seeds per pound of seed
- + Can be difficult to get enough seed on in some situations

× Dehulled seed

+ Easier to meter+ Easier to estimate planted

seed population

WEED MANAGEMENT

Cultural & Mechanical Practices

- ✓Crop Rotation
- ✓Site Selection
- Don't inherit problems
- ✓Cover crops
 - Choose wisely vetch would be a poor choice – considered noxious in small grains.
- ✓Cultivar Selection
 - using quality seed, compete with weeds rapid growth and tillering

WEED MANAGEMENT

Cultural & Mechanical Practices

- Planting date and seeding rate
 - Over-seeding with clover?
- Sanitation and Field Inspection
 - Pre-wash equipment before entering field Mowers, planters, tillers, etc.
 - Scouting field several times through the season is imperative. Address problems with early detection.

WEED MANAGEMENT

Cultural & Mechanical Practices

✓ 'False' Planting

- Field is prepared early, weed seed germinates, a harrow or planter is run over the field to disturb the weeds
- Planting follows after several days

✓Hand Rogueing

✓Tine or harrow weeding

• 3 to 4 weeks after planting – plants established to minimize damage.

More on non-mechanical weed management

Rotation of crops...is the most effective means yet devised for keeping land free of weeds." Clyde Leighty in Soils and Men (1938)

Crop Rotation:

Series of crops that differ in

- plant family
- planting/harvesting dates
- growth habit
- planting method

Crop rotation for weed management

Weed suppressive crop:

Two-or-more-year mowed legume sod crop (annual grasses, perennials)

Crop rotation for weed management, cont.

Cover crop that allows for early, midsummer, late summer tillage, e.g., buckwheat

Crop rotation for weed management, cont.

Traditional cleaning crops: e.g., potatoes, other root crops

Crop rotation for weed management, cont.

Row crop that is effectively cultivated

Non-mechanical weed management. cont

Higher seeding rates

e.g., organic growers' seeding rate for wheat ranges from 120-180+ Ibs/A

Choose the appropriate crop to fit the field's weediness

Lower potential weediness \rightarrow Greater potential weediness Winter wheat \rightarrow spring emmer \rightarrow spring wheat

ISSUES LEADING UP TO HARVEST

✓ Fusarium Head Blight (Scab)

- Infects heads at flowering, usually late May to early June in Northeast
- Infected head has bleached spikelets evident about 2 to 3 weeks after flowering
- Scouting at this time is imperative, as Scab is not as evident in mature, harvestable heads
- Deoxynivalenol (DON) is a vomitoxin detected infected kernels. The limit is 1 ppm at the mill!

FUSARIUM HEAD BLIGHT IN LATE JUNE CORNELL, ITHACA, NY

ISSUES LEADING UP TO HARVEST

- ✓ Fusarium Head Blight (Scab) Management
 - Avoid harvesting areas of high infection. Areas by hedgerows, windbreaks or low areas might be regions of higher moisture and more conducive to infection. Scouting would alert you to these problem areas.
 - Infected kernels tend to be smaller. Raising fan speed on combine can help.
 - Investigate resistant varieties!!
 •US Wheat & Barley Scab Initiative website

http://www.scabusa.org/

ISSUES LEADING UP TO HARVEST

- ✓ Pre-harvest Sprouting (PHS)
 - Germination of the grain occurs in the spike prior to harvest.
 - A period of prolonged rainfall and/or high humidity can cause PHS
 - Can ruin grain quality for any milling and baking.

ISSUES LEADING UP TO HARVEST

- ✓ Pre-harvest Sprouting (PHS) Management
 - Scout field to check moisture.
 - Harvest at higher moisture if grain dryers are an option
 - Look for unusually low test weight or falling numbers.
 - Investigate sprout resistant varieties Reds tend to be more sprout resistant than whites but there are some tolerant varieties.

Seed cleaning

Before harvest

- Make sure combine is clean!
- Immediately after harvest
- Before testing and sale
- Before storage
 - Make sure bins are clean!

Seed cleaning, cont.

Immediately after harvest: Double-screen rotary cleaner to remove coarse green matter (legume, weed) and weeds seeds →prevents grain spoilage, offflavors

Seed cleaning, cont.

Before sale:

- Other cleaning may be necessary, e.g.,
 - Gravity table: separates by density or specific gravity,
 e.g., can separate such things as stones, oats, wild radish seed out of wheat
 - •Indent separator: separates on the basis of seed length, e.g., can separate vetch from grain
- Excellent, free resource on seed-cleaning: Harmon et al. ,1968, *Mechanical seed cleaning and handling*, Agr. Handbook 354, http://naldc.nal.usda.gov/download/CAT87208718/PDF

Dehulling: spelt, emmer, einkorn

Larger quantities

- Take to dehulling facility
- Cost (excluding transport):

Smaller-scale

- Buy or share a small-scale dehuller • U.S. :Codema, Forsberg
 - European: Heger, Zanotti, Osttiroler,
- →factor in cost, power requirements, effective
- (% dehulled, cracked kernels), separation of hulls from kernels
- Website on dehullers: http://www.spelt.se/maskiner.htm

Grain drying

Moisture content: **13% or below for long-term storage** Larger scale •Grain dryer •Clean bins with drying floors and fans Smaller scale: •Screw-in aerator •Jury-rigged air circulation •Grain spread onto clean surface, and periodically turned

Storage: Insect control

- Sanitation
- Pheromone lures, sticky traps (monitoring)
- Diatomaceous earth
- Heat
- Cold or Freezing

CO₂, N₂

Storage: Rodent control

- Sanitation
- Cats

Rat-proofing • Metal strips

on bottom of doors • Wire mesh

over windows

Common grain quality issues

Low protein (bread wheat):

- \rightarrow appropriate variety, fertilization, weed management
- By-tastes from weed contamination in grain →sound weed management, rogueing, rotary cleaner
- Stone in grain
- \rightarrow avoid lodging (excessive N fertilization), proper combining Moldy grain
- →Rotary cleaner, storage at 13% moisture
- Sprouting in the head/low falling number:
- →Timely harvest, appropriate variety
- Insect damage in storage
- \rightarrow good sanitation & storage conditions, diatomaceous earth Diseased seed: Fusarium infection with vomitoxin production
- → appropriate variety, sound rotation, scouting, avoid harvesting areas of high infection, seed cleaning, appropriate market

Many thanks to

- Rg Bell, Bell Farm
- Hervé Cournède
- Mike Davis, Willsboro Farm, Cornell University
- Julie Dawson, Cornell University
- Rodney Graham, Oxbow Farm
- Kit & Cathy Kelley, White Frost Farm
- Klaas Martens, Martens Farm & Lake view Organic Grain
- Thor Oechsner, Oechsner Farms
- Mark Sorrells, Cornell University
- Ron Springer, Grains Alive
- Andrea Stanley, Valley Malt
- Joel, Elaine, & Eric Steigman, Small Valley Milling
- Nigel Tudor, Weatherbury Farm
- Alan Westra, New York Seed Improvement Program
- Steve Zwinger, Carrington Research Extension Center, NDSU

Find all upcoming webinars and archived eOrganic webinars at http://www.extension.org/pages/25242

Find the slides as a pdf handout and the recording at http://www.extension.org/pages/66869

Additional questions about organic farming? https://ask.extension.org/groups/1668

We need your feedback! Please fill out our follow-up email survey!

