Meeting Weather Challenges in the Western U.S.
Organic Practices to Mitigate and Prepare for Climate Change

Mark Schonbeck, PhD
Organic Farming Research Foundation

Joined by Maegen Simmonds, PhD
Lawrence Berkeley Lab

How is Climate Change Impacting Organic Agriculture in the Western Region?

Farmer-identified
Research Needs
Organic Farmer Research Priorities in the Western Region

Soil health – 71%
- Practices to sequester soil organic carbon (SOC)
- Economic benefits for SOC

Irrigation and drought – 56%
- Irrigation efficiency
- Soil water retention
- Soil salinity
- Drought and pasture health

Available at http://ofrf.org/

Extremes of Drought and Flood

- “Drought...heat waves...costs [of] mitigation have me concerned I can no longer do this.”

- “Three years ago...drowning rain and lack of sun...this June was one in 400 year drought”
 Farmer quotes, NORA 2016

- “11.7 inches is the average...[with] climate change, last three years [were] 26 – 2.5 – 5.4 inches.”
 Doug Crabtree, Havre, MT, pers. comm.
Irrigation in the Era of Climate Change

• “The current drought has dramatically decreased irrigation water allocated to organic tomato growers.”
 Amelie Gaudin et al., 2018.

• “Irrigation is not truly sustainable...we need better practices that improve our water capture, retention, and cycling.”
 Farmer quote, NORA 2016, p. 25

Other Climate Related Concerns

• Impact of altered temperature patterns on chill hours for bud break in tree crops
• Need for new crops and cultivars to adapt
• New weed and insect pest species
• Increased disease pressure

Warmer winters may fail to meet chilling requirements for normal development in tree fruit and nut crops.
How Does Agriculture Affect Climate?

Greenhouse Gas (GHG) Emissions

• Carbon dioxide (CO₂)
• Nitrous oxide (N₂O)
• Methane (CH₄)

Carbon Cycle: Soil and Plant Cover

Greenhouse Gases in Agriculture

<table>
<thead>
<tr>
<th>Gas</th>
<th>CO₂eq</th>
<th>CO₂-Ceq</th>
<th>Sources in Agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>1</td>
<td>1</td>
<td>• Fossil fuel – farm machinery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Embodied energy in inputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Lime, urea, field burning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Losses of soil organic carbon (SOC) and biomass</td>
</tr>
<tr>
<td>CH₄</td>
<td>21</td>
<td>7.6 (CH₄-C)</td>
<td>• Livestock enteric methane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Manure storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Paddy rice cultivation</td>
</tr>
<tr>
<td>N₂O</td>
<td>310</td>
<td>133 (N₂O-N)</td>
<td>• N-fertilized soil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Manure (pasture & storage)</td>
</tr>
</tbody>
</table>
Direct Agricultural GHG Emissions in the U.S. in 2017

CO₂ from farm machinery and embodied in inputs
Rice + misc.
Manure storage
Enteric CH₄
N₂O from soil

Accounts for ~10% of total U.S. GHG emissions.

Does not include CO₂ emissions from:
• Soil erosion.
• In-situ SOC losses.
• Breaking sod or clearing forest for agriculture.

Soil and the Global Carbon Cycle

Soil: 3,000 organic
940 inorganic

Vegetation 620
Atmosphere 790
Fossil Fuels 5,000
Oceans 38,000

C pools: billions of tons
Flows: billions of tons per year

The Carbon Cost of Clearing Land

30 – 50% SOC losses in 50 years

Cover crops
Diversified rotation
Compost

Reduced tillage
More soil carbon

Long term trials:
- Organic systems add 400 – 600 lb SOC/ac-yr.
- Can offset direct agricultural GHG
“Agriculture and natural and working lands across rural America are an important part of our climate solution. [Soils] are the largest storage source for terrestrial carbon.

Karen Ross, Secretary
CA Dept. Food and Agriculture
March 12, 2019

Methane (CH$_4$)

In anaerobic conditions, soil microbes convert organic C into CH$_4$.

Agriculture emits CH$_4$ from:

- Livestock (enteric) ~500 lb per animal-year
- Manure lagoons ~ 10% of U.S. agricultural GHG
- Flooded rice paddies ~110 lb per acre-year

Cattle emit CH$_4$, whether pastured or confined.

Rice paddy soils convert organic residues to CH$_4$.

ORGANIC FARMING RESEARCH FOUNDATION
Denitrification and Soil N_2O Emissions

Soluble N + limited O$_2$ + available organic C + soil microbes \rightarrow N_2O
- 80% water filled pore space (little at <60%)
- Compacted soil
- Fine-textured soils
- Little N_2O if soil <6 ppm nitrate-N

IPCC Models for N_2O emissions:
- Direct: 1% of applied fertilizer N
- Indirect: 0.75% of leached N

N_2O increases as N > crop need

N$_2$O in Organic Systems

N$_2$O from organic N sources:
- Average 0.57% of applied N.
- 0 – 0.3% for finished compost.
- >1% for manure slurry.

N$_2$O risk factors in organic:
- Ample active SOM
- Poultry litter + excess rain
- Legume plowdown
- Heavy N feeder, e.g., broccoli

Plowing a legume green manure can lead to a burst of N$_2$O emissions.
Organic Farming Practices to Meet Climate Challenges

- Building Resilience through Healthy Soil
- Sequestering Carbon
- Mitigating Greenhouse Gases

Pop Quiz:

What sophisticated biotechnology shows the greatest promise to help humanity slow climate change and protect our food system against its effects?

Hint: It is not a human invention.
Living Plants:

Build healthy, resilient soils
- Foliage protects soil surface.
- Living roots:
 - Build SOM and soil structure.
 - Feed soil life.
 - Deepen soil profile.

Sequester C
- Photosynthesis converts CO$_2$ into organic C.
- Roots deliver organic C to soil.
- Deep roots build stable SOC below tillage depth.

How Roots Build SOC Throughout the Soil Profile

- Soil biological activity is concentrated near the surface; SOC turns over quickly.
- At least half of SOC occurs deeper than 12 inches, where it has greater stability.
- Annual crops root to 3 – 6 ft; perennials 5 – 10 ft or deeper.
Rain soaks in. Healthy soil holds ample moisture and hosts myriad beneficial organisms. Crops are resilient to drought, disease, and other stresses. Healthy soil drains well and stays aerated.

Soil Health and Climate Resilience

Climate Benefits of Organic Practices

<table>
<thead>
<tr>
<th>Practices</th>
<th>Mitigation</th>
<th>Resilience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tight rotation, sod, and cover crops</td>
<td>SOC, N₂O</td>
<td>Soil and crop health, drought tolerance</td>
</tr>
<tr>
<td>Crop diversification</td>
<td>SOC</td>
<td>Soil biodiversity and health, reduced risk</td>
</tr>
<tr>
<td>Nutrient management</td>
<td>N₂O</td>
<td>Rhizosphere health, nutrient cycling</td>
</tr>
<tr>
<td>Rotational grazing</td>
<td>SOC, CH₄</td>
<td>Drought resilience, forage and livestock health</td>
</tr>
<tr>
<td>Compost</td>
<td>SOC, CH₄</td>
<td>Soil and crop health</td>
</tr>
</tbody>
</table>

Organic Farming Research Foundation
Combine Practices to Sequester C

Continuous no-till, cash crop residues only: 510 lb C/ac-yr

Not stable

Cover crop: 135 – 195 lb C/ac-yr

Cover crop + no-till, roll-crimping and planting in one pass: 440 – 800 lb C/ac-yr

Diversify the Rotation

Diversified crop rotation: 180 – 470 lb C/ac-yr
Make and Use Compost Wisely

- Stable SOC
- Beneficial microbes
- On-farm nutrient cycling
- Diverts:
 - Leaves, yard waste, food waste from landfill
 - Manure from lagoons
- Composting emits some GHG.
- Importing feedstock can deplete source acreage.
- Can accrue excess soil P, suppress mycorrhizae
 - Calibrate rate to soil test P

Manage N to Tame the N\textsubscript{2}O Beast

- Provide N from SOM and slow-release sources.
- Encourage mycorrhizae, avoid excess P.
- Band concentrated N in crop rows at low rates (<50 lb/ac).
- Avoid spreading manure or tilling-in legumes during wet conditions.
- Sow legumes with grasses in cover crop or sod plantings.
- Grow deep-rooted, N-demanding crops to “mop up” leftover N.
System of Rice Intensification

The Method:
• Fields not flooded
• Seedlings set 1 foot apart
• Compost for fertility

Results:
• Healthy soil, healthy roots
• Enhanced N use efficiency
• Much higher yields
• Much less CH\textsubscript{4}
• 60% less GHG / ton yield

Farmer Moghanraj Yadhav grows excellent SRI rice crop without flooding in Tamil Nadu, India.

Restore Soils with Livestock

Management-intensive rotational grazing (MIG) builds ≥ 2,000 lb C/ac-yr. Silvopasture (top right) can add 3,900 lb C/ac-yr. Multispecies grazing (right) builds soil diversity and resilience.
MIG vs. Continuous Grazing:

- Sequesters > 1 ton SOC/ac-year.
- Improves forage quality, and meat and milk production.
- Reduces enteric CH$_4$/cow by 30%.
- Distributes manure and reduces N$_2$O hotspots.

Plant Perennial Crops and Conservation Buffers

- Herbaceous perennial conservation buffers, field border, filter strip, etc.: 375 – 800 lb/ac-yr
- Agroforestry practices, SOC + aboveground biomass C: 2,400 – 3,700 lb/ac-yr (semiarid – humid regions)
Technical and Financial Assistance in Meeting the Climate Challenge

• Estimating Benefits
• Federal Conservation Programs
• State and Local Programs

Estimating GHG Footprint and Documenting Benefits of Practices

Monitoring soil organic carbon:
• Total SOC (= SOM/2)
• Permanganate oxidizable C (POX-C)
• Soil respiration

Estimating Greenhouse Gas Emissions:
• COMET Farm http://cometfarm.nrel.colostate.edu/ - GHG decision support tool, updated to include MIG, cover crops, and organic amendments
• Organic Farming Footprint https://ofoot.wsu.edu/ - estimates SOC and net GHG for organic systems
NRCS Conservation Programs

CSP and EQIP support:
- Cover cropping
- Improved crop rotation
- Advanced grazing system
- Conservation buffers
- Comprehensive conservation planning

2018 Farm Bill:
- Emphasis on soil health
- Address “increasing weather volatility”

Soil Health Principles

- Keep soil covered
- Maintain living roots
- Minimize disturbance
- Diversify crops

California Healthy Soils Program

Soil health practices to build SOC and reduce GHG
- Incentives for practices
- Demo projects
- Measure/estimate GHG benefits
- $15M for 2019, part from state cap & trade
- https://www.cdfa.ca.gov/efi/healthysoils/
Other State Soil Health Programs

- New Mexico Healthy Soils Program
 - Soil Health Act 2019 - $455,000 of funding
 - Research, monitoring, education, tech assistance

 - Research best practices for Hawaii
 - Carbon farming certificate and carbon credits

- Soil Health Institute listing of additional State agency and University programs, including the land grant universities in CA, CO, MT, and WA: https://soilhealthinstitute.org/resources/catalog/

Meeting Climate Challenges in the Western Region

Research Findings and Farmer Experiences
Saving Water through Soil Health and Deficit Irrigation

OFRF-funded project
Can healthy soil improve water use efficiency and resilience in organic tomato?

Scott Park’s soil health practices:
• Diverse crop rotation
• Winter cover crops
• Compost, microbial inoculant
• Reduced till, controlled traffic

2016 Trial: Deficit Irrigation at Park Farm Organics

Irrigation treatments:
• Standard (stop 30 days before harvest)
• Deficit (stop 45 days before harvest)

Outcomes with deficit irrigation:
• Saved 0.5 acre-ft of water
• Yield and quality unaffected
• End-of-season soil microbial activity doubled
• Nitrate-N significantly less
2017: Organic Enhances Water Efficiency

- Organic used much less water.
- Organic doubled soil moisture reserves.
- Yields were similar across all treatments.

Based on slides by Dr. Amelie Gaudin

Vital Role of Winter Cover Crops during California’s Rainy Season

Cover Crops

Poor Soil Structure & Poor Soil Health

Healthy Soil with Good Structure

Photo: Z. Kabir, NRCS, Feb 07, 2017
N$_2$O Challenge in Organic Broccoli

Organic N rate trials in WA:
- Linear yield response to > 200 lb N/ac
- $4 - 34$ return per 1 on N.

Organic broccoli in CA, 215 lb N/ac:
- Leached 180 lb N/ac
- Emitted 23 lb N/ac as N$_2$O
- Net loss of SOM

2/3 of N as compost and cover crops:
- Increased SOM
- Cut N$_2$O by half, leaching same
Winter Cover Crop Recycles N

Spring lettuce ➔ Fall broccoli ➔ Winter cover: rye + legume mix

N recovery, SOM, higher lettuce yield

Sarah Brown, Oregon Tilth

Tightly Coupled N Cycling in Organic Tomato in California

Study of 13 fields, three patterns:

• *N deficient* – Nitrate-N < 6 ppm, low SOC, low yield

• *N saturated* – Nitrate-N > 6 ppm, moderate SOC, high yield, risk of N_2O emissions

• *Tight N cycling* – Nitrate-N < 6 ppm, high SOC, high yield with minimal N_2O risk

Bowles et al., 2015. PLOS ONE.
Balancing C and N in Organic Inputs

Puyallup, WA (maritime) organic vegetable rotations receiving:

- Compost, Moderate C:N
- Fertilizer, Low C:N

or

Poultry litter

After 11 years, the higher-C compost resulted in:

- Better soil structure and water infiltration.
- 35% higher microbial activity.
- 43% higher total SOC.
- Changes in soil biota that could mitigate N₂O emissions.

More Compost Research Findings

- In Utah dryland, one-time heavy application of compost doubled topsoil SOC and organic wheat yields for 15 years.
- In California rangeland, one compost application enhanced plant production and net SOC storage.
- LCA: composting manure and yard waste avoids massive GHG emissions from lagoon and landfill.
- A little compost can enhance SOC accrual from cover crops and other practices.
Living Cover Builds Orchard and Vineyard SOC and Resilience

- Bare orchard floor soils can lose half their SOC.
- Living cover improved soil and tree health in Utah orchards.
- Living mulch in Oregon cherry orchard enhanced SOM, N cycling, and microbial activity.
- Bonterra Vineyards found 9 – 12% higher SOC in organic systems.

Sequestering SOC in Dry Regions: Can Deep Roots Backfire?

Dryland challenge:
- Wheat-fallow depletes SOC.
- Cover crops can deplete moisture and hurt yields.
- Alfalfa is one of the worst.
- Barley, medic, millet, and cowpea conserve moisture.

Sunflower and pearl millet root deep; sunflower uses a lot of moisture; millet is water-efficient.
Building SOC on Limited Rainfall

Diverse rotations, covers terminated by blade plow, intercrops (kamut-flax in photo, left), and no fallow enhanced SOC by 27% in 10 years on 11” rain/year at Vilicus Farms in MT. A crop-livestock integrated system with MIG, no till, and high crop diversity tripled SOC in 20 years near Bismarck, ND (16” moisture/year).

Some Unanswered Questions

Research Needs
• Many soils of drier regions are rich in carbonates, or soil inorganic carbon (SIC).
• Lowering soil pH could convert it to CO$_2$.
• Organic systems lost 9 – 14 tons SIC/ac in 3 out of 7 studies.
• Research on SIC conservation is urgently needed.

SOC Saturation

1. Depleted cropland → permanent pasture
2. Cropland → MIG pasture
3. Continuous no-till crops
4. Organic cropping system
5. Diversified rotation

Steady state SOC:
• Cropland ~55% of native
• Best soil health mgmt. → 85%
• Future innovation → 100%?
Will Climate Change Itself Make Mitigation More Difficult?

- Warming temperatures will accelerate SOC oxidation, especially in colder climates.
- Thawing of permafrost and rapid oxidation of peat soils may cause large global SOC losses.
- N_2O emissions increase about 20% for each 1°C (1.8°F) increase in mean July temperatures.
- One field study suggests that increasing atmospheric CO_2 may accelerate SOC losses.
- Organic practices are especially beneficial to SOC and microbial activity in warm climates.

Research Needs and Opportunities

- Crop breeding for:
 - Climate resilience
 - Nutrient-efficiency
 - Climate-friendly organic systems
- Deep roots for SOC sequestration
- Tightly coupled N cycling
- Farmer payment for ecosystem services
Questions?

Download the Soil Health and Organic Farming Guides at www.ofrf.org

This webinar was made possible by a grant from USDA Western SARE.