Welcome to the webinar!

- The webinar will start at the top of the hour.
- If you'd like to type in a question, use the question box on your control panel and we will read the questions aloud after the c. 45 minute presentation
- The webinar is being recorded and you can find it in our archive at http://www.extension.org/pages/70357
- A pdf handout is also available at the link above.

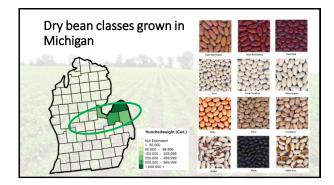
Breeding Efforts and Cover Crop Choices for Improved Organic Dry Bean Production Systems in Michigan

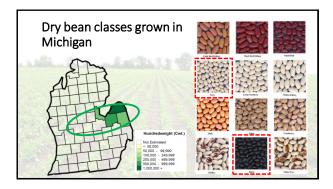
Erin Hill and Jim Heilig

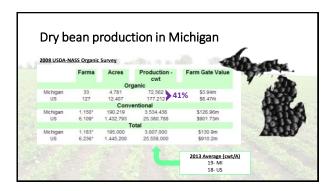
March 25, 2014

MICHIGAN STATE UNIVERSITY

Jim Heilig

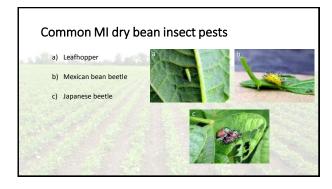


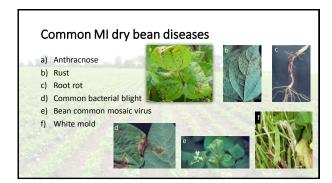

Dry bean webinar outline

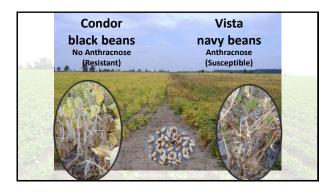

- Introduction
 - Dry bean production across US and in MI
- Michigan growing conditions
- Dry bean breeding
 - Elite variety evaluation
 - Selecting for better nitrogen fixation
- Cover crop influence on dry beans
 - Nitrogen availability

 - Weed pressure
 Dry bean populations and yield

Where are dry beans grown in U.S.? 2012-USDA, NASS




MI growing conditions • Hardiness zones 5-6 • Precipitation • 30" annually • Jun-Oct-~16" • Soil type • Order: Alfisols • Sandy clay loam to clay loam • Organic matter: 1-3%



Common MI dry bean production practices • Planting • June • 15-30" rows • Harvest • late Sept. to early Nov. • Direct harvest is more common • Mostly rain fed production >90% • Conventional producers apply >40 lbs/A nitrogen at planting

のは世紀の

Some previous findings

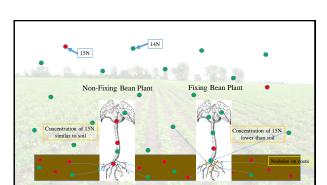
- In side-by-side plots, organic yield was approximately 20% lower than conventionally grown beans
- · Large-seeded beans-Kidney and Cranberry-yielded the lower
- Small, medium-seeded beans-Black, Navy, Pinto, Pinks, Red and Great Northern-had significantly greater yields
- Both systems had similar stresses-insect, precipitation, and disease and were controlled accordingly
- The greatest difference was in soil management-namely differing N levels

	black and navy beans are important et classes in Michigan
W.	

BNF-Biological Nitrogen Fixation

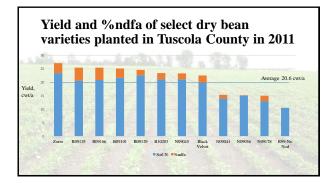
- Dry beans, like many legumes, are able to form associations with soil bacteria-Rhizobia-which allows them to fix nitrogen from the atmosphere
- Dry beans are typically considered poor nitrogen fixers, not able to obtain their total N needs from fixation as soybeans do
- BNF ability varies by plant genotype and strain of Rhizobia in the soil
- This variation may allow development of varieties which are better able to fix sufficient amounts of N from the atmosphere

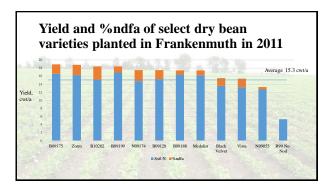
How do we measure differences in BNF?

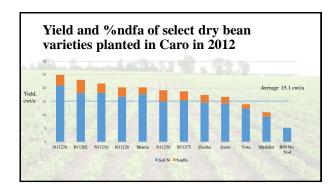

- · Natural Abundance Method
- Analyze 15N in plant tissue and seed
- Compare 15N content of a non-nodulating, non-fixing bean (R99) to the varieties fixing N

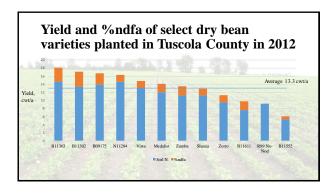
Dry bean R99, non-fixing genotype

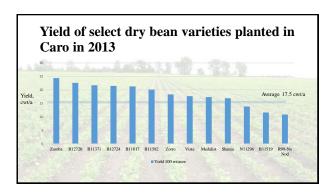
What is 15N?

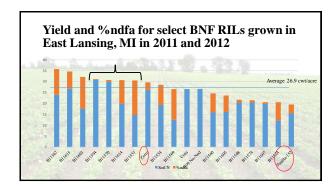

- A naturally occurring stable isotope of Nitrogen

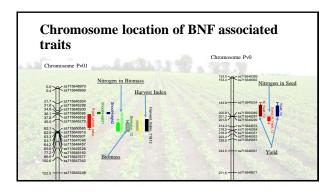

- Can be measured with appropriate equipment (UC Davis Stable Isotope Facility)

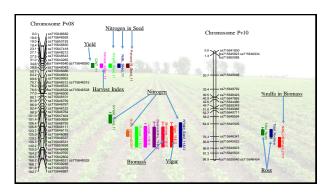



A look at organic seed yield and percent N derived from the atmosphere

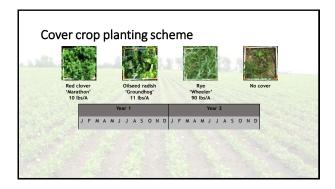

- 18 black bean and 18 navy bean advanced breeding lines, commercial checks, and R99, the non-nodulating genotype, were selected
- Each year breeding lines were updated with lines showing promise in standard trials and the BNF genetic population
- Followed organic practices for fertility, weed control, and insect control
- Seed treated with rhizobia inoculant prior to planting
- At harvest, 15N was measured to determine the percent nitrogen derived from the atmosphere (%ndfa)

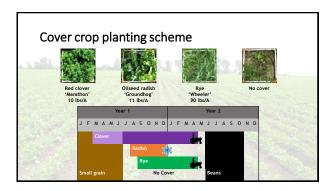


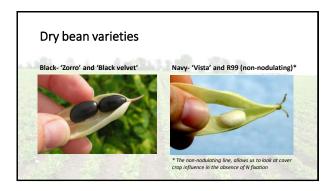


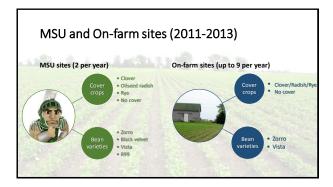

Some Observations of yield trials of navy and black beans • Performance is quite variable from year to year • Navy beans tend to yield lower than black beans • Ndfa does not make up a significant portion of the N in the seed at harvest

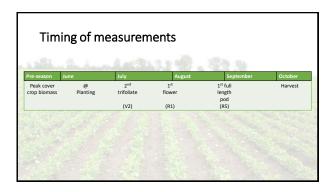
Investigating the genetics of BNF • Variability exists within dry bean for BNF • The black seeded landrace Puebla-152, from Puebla, Mexico, has been identified as fixing a higher amount of N-but it is late maturing in MI • A population of 125 Recombinant Inbred Lines (RILs) was developed by crossing Puebla-152 with the commercial black bean variety 'Zorro' which is adapted to production in MI

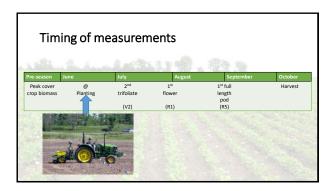


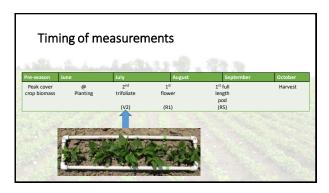

Some Observations on the Genetics of BNF • There is genetic variability for %ndfa in the Puebla-152 x Zorro RIL population • Some RILs derive a substantial portion of their N from the atmosphere • BNF characteristics colocalize in the genome, often with yield traits • Partitioning-the ability to mobilize resources from vegetative tissue to seeds plays an important role in improving nitrogen use efficiency

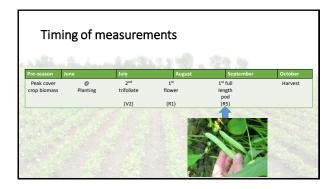


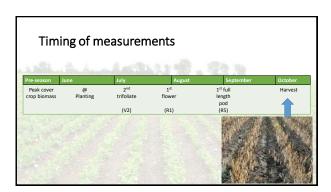

How do cover crops influence...? • Nitrogen availability • Weed dynamics • Numbers • Growth • Dry bean • Populations • Days to maturity • Yield • N content of grain

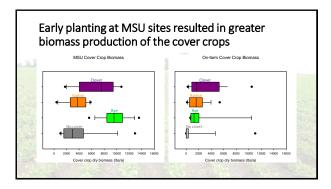


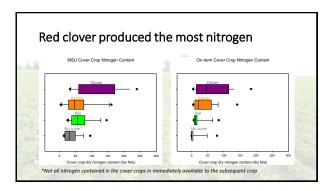


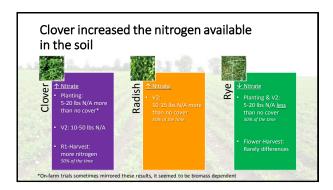


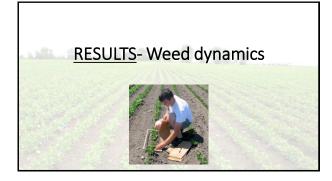


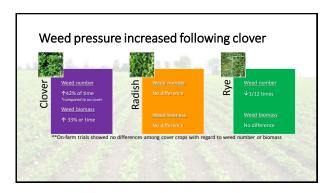

Timir	ng of m	easurem	nents	20 1	
Pre-season Ju	ine	July	August	September	October
Peak cover crop biomass	@ Planting	2 nd trifoliate (V2)	1 st flower (R1)	1 st full length pod (R5)	Harvest
Radish- Novembe (prior to winter-ki Rye- ~1 month					
before planting (18" target height Clover- 2 weeks before planting)				

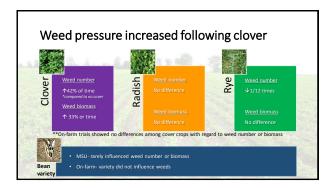


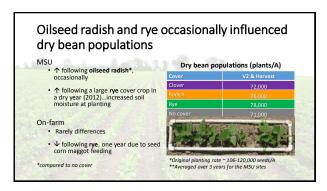

Pre-season	June	July	August	September	October
Peak cover	@	2 nd	1 st	1 st full	Harvest
rop biomass	Planting	trifoliate	flower	length	
		(V2)	(R1)	pod (R5)	

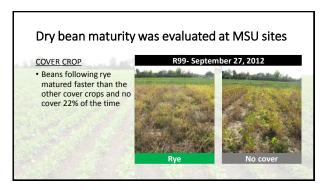


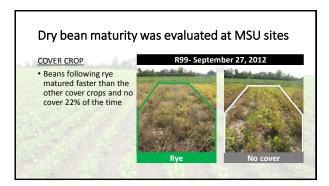


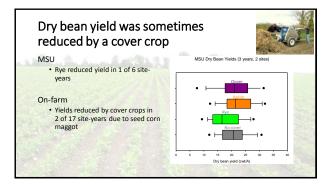


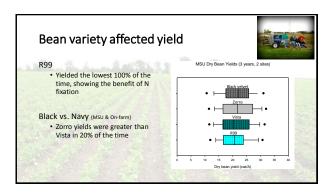




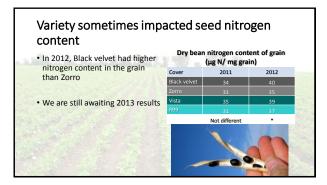


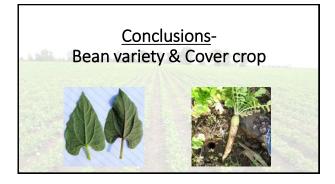


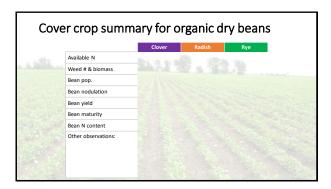


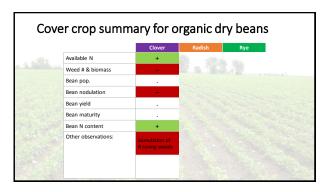

Black bean populations were greater than navy bean populations Dry bean populations (plants/A) Over V2.& Harvest Black velvet S1,000 20r0 S2,000 Vista G7,000 B99 70,000 *Original planting rate ~ 106-120,000 seeds/A **Averaged over 3 years for the MSU sites

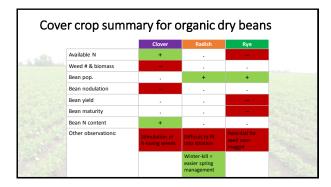
Did cover crop or bean variety affect nodulation? COVER CROP • At R1 (flowering) ↓ nodules in beans following clover BEAN VARIETY • At V2 (2nd trifoliate) ↑ nodules in Black velvet beans

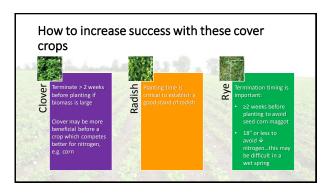







Following frost-seeded clover	Dry bea	n nitrogen conte (μg N/ mg grain	
(2012) we observed a 30%	Cover	2011	2012
increase in bean nitrogen	Clover	34	46
content	Radish	31	
	Rye	32	35
We are still awaiting 2013 results	No cover	33	35
to see if this holds true over		Not different	
multiple years			1




Dr	y bean vai	riety sun	nmary		
		BLACK BEANS		NAVY BEANS	
		Black velvet	Zorro	Vista	R99 (no-nod)
	Bean population	↑ than	Navies		
	Bean nodulation	Highest at V2			NA
	Bean maturity	Latest	Earliest	Middle	Middle
	Bean yield	↑ than Navies not always significant			Lowest
	Bean N content	May be higher than Zorro			

Available N + Weed # & biomass - 3ean pop. + 3ean modulation - 3ean yield - 3ean maturity - 3ean N content +
Bean pop. + Bean nodulation - Bean yield Bean maturity
Bean nodulation Bean yield Bean maturity
Bean yield
Bean maturity
Bean N content + .
Other observations: Stimulation of N-loving weeds into rotation

Questions?	
Jim Heilig	Erin Hill
heiligja@msu.edu	hiller12@msu.edu
MSU Dry Bean Breeding & Genetics Program	MSU Weed Science MSUweeds.com
BEAN.css.msu.edu	Midwest Cover Crops Council
	MCCC.msu.edu

- Find all upcoming and archived webinars at http://www.extension.org/pages/25242.
- Find the slides and recording for this presentation at http://www.extension.org/pages/70357
- Have an organic farming question? Use the eXtension Ask an Expert service at https://ask.extension.org/groups/1668/ask
- We need your feedback! Please respond to an email survey about this webinar which you'll receive later.
- Thank you for coming!

