

Genomic Resources for Orphaned Andean Crops – Amaranth and Quinoa

Jeff Maughan, Rick Jellen, Craig Coleman, Josh Udall & Mikel Stevens Brigham Young University, Department of Plant and Wildlife Sciences, Provo, Utah 8460

Chenopodium quinoa

FA0/UN - 2013 the International Year of Quinoa

- The Altiplano: 255,000 km² at 3500-3850m (~12,500 ft)
- 100–200 mm (4-8 inches) rainfall/yr, frequent frosts (-3 to 38°C)
- Allotetraploid (2n = 4x = 36)
- Grain crop, excellent balance of carbohydrates, lipids, and protein
 - Ideal balance of essential amino acids
 - ▶ Protein content: 7.5 22.1%
 - Oil content: 4.5 8.75%
- Anti-nutritional triterpenoid saponins
- Export crop for expanding organic food market
- Bolivian government views increased quinoa productivity as critical for improving domestic food security

Amaranthus

Before the Spanish conquest of the ancient Americas, the grain amaranths were one of the basic foods of the New World. Records indicate that nearly 20,000 tons were sent from 17 provinces to Tenochtitlan (present-day Mexico City) as annual tribute to the Aztec emperor Montezuma (NCR 1984). This is equal to the tribute expected of beans and maize! Oldest archeological evidence 5000 BCE (Puebla, Mexico)

- Botanical Description: Broad-leafed, annuals 0.4 to 3.0m in height
- Inflorescences: Dichasial cyme variety of colors: red, purple, orange, gold, etc.
- Flowers: Unisexual, First flower on a cyme is staminate, 100+ pistillate flowers - Favors self-pollination over outcrossing (Sauer 1993)
- ▶ Fruit: Dehiscent Pyxides
- Seed: Variety of colors: pale vs. dark, 1 to 1.5mm diameter, seeds eaten raw or cooked as pseudocereal, leafy vegetables (15% protein)

Germplasm bank – USDA, Ames, IA David Breener

Amaranthaceace- Genera (6); Accessions (3,297)

Chenopodiaceae – Genera (5); Accessions (751)

http://www.ars-grin.gov

Arguable the genus contains the most damaging weedy species in the U.S.!

Summary of major Amaranthus weeds in the United States

Species	Common name	U.S. distribution ^a	Primary habitat ^b	Sex strategy	Nuclear DNA content ^c (pg)
A. retroflexus	redroot pigweed	throughout	agronomic	monoecious	1.1
A. hybridus	smooth pigweed	eastern half	agronomic	monoecious	1.0
A. powellii	Powell amaranth	northwest	agronomic	monoecious	1.0
A. spinosus	spiny amaranth	southeast	pastures	monoecious	1.0
A. albus	tumble pigweed	throughout	rangelands	monoecious	1.1
A. blitoides	prostrate pigweed	throughout	vegetable	monoecious	1.1
A. tuberculatus ^d	tall waterhemp	eastern half	agronomic	dioecious	1.3
A. palmeri	Palmer amaranth	southern	agronomic	dioecious	0.9

Round-up resistant Palmer amaranth (superweed) in a field of GMO Soybean

^aData from Horak et al. 1994.

^bAlthough a primary habitat is given, most of these species can be found in numerous habitats.

^cData from Jeschke et al. 2003 and Rayburn et al (In press).

^dA. tuberculatus and A. rudis are now classified as one species, A. tuberculatus (Pratt and Clark 2001; Mosyakin and Roberson 2004).

- Redroot pigweed and slender amaranth, are among the most widely distributed weeds in the world (Holm et al. 1997)
- Smooth pigweed and spiny amaranth are ranked among the 18 most serious weeds in the world (Holm et al. 1991)
- ✓ The pigweeds are notorious for their ability to develop resistance to herbicides. Resistance to triazine, acetolactate synthase, dinitroanilines (e.g. trifluralin), bipyridyliums (e.g., paraquat), and protoporphyrinogen oxidase-inhibitors (e.g., acifluorfen) have all been reported (Heap 2004)
- \checkmark The pigweeds (and the grain amaranths) use the C4 photosynthetic pathway
- Pigweeds use two contrasting strategies of sexual reproduction

BAC Library Construction

Maughan et al. (2008) Crop Sci. 48:85-94

- Predicted average insert size of 139 kb/ insert - should be near a 10X library.
- The entire library (AH_Pba) was double spotted on to two (2) filter membranes, where each contained 36,864 double spotted clones.

Protoporphyrinogen oxidase (PPO) is the last common enzyme in the tetrapyrrole biosynthetic pathway that produces heme.

- P. Tranel (UI) provided primers for the amplification of a PPX probe from A. hypochondriacus.
- PCR product was sequenced, labeled and probed against the BAC library.
- Two positive hits were identified and then selected for primer walking.

Protoporphyrinogen oxidase

Patzoldt et al. (2006) A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. PNAS 103:12329-12334

Spidey Alignment: mRNA coverage: 100% - Overall percent identity: 97.0%

1608 bp of coding - 10108 bp of intron sequence (535 AA)

4548	TTTTTTGCAGTTTGTTGATTATGTTATTGACCCTTTTGTTGCGGGTACAT
586	TTTGTTGATTATGTTATTGACCCTTTTGTTGCGGGTACAT
	F V D Y V I D P F V A G T
4588	GT <mark>GGC</mark> GGAGATCCTCAATCGCT <mark>A</mark> TC <mark>TG</mark> TG <mark>AG</mark> TTAAATATTG
626	GTGGAGATCCTCAATCGCTTTC <mark>CA</mark> TGTA
	C G D P Q S L S M Y

Bacterial Artificial Chromosome (BAC) Library

- Contains approximately 70,000 clones
- ▶ 10 X genome coverage
- Average fragment size in the first half of the library is 112 kb
- Average fragment size in the second half of is 130 kb
- In storage for public use at the Arizona Genomic Institute

Characterization of salt overly sensitive (SOS1) gene homoeologs in quinoa

	of Exens	Length	Length (Range)	Length (Range)		sites	sites	Identity	(# of, sites)	(# of sites)	ratio	diversity (Pi)*
SOS1A	23	3477	152	812 (78-2124)	96.9%	100	1 (9 bps)	96.5%	0.077	0.0145	0.186	0.0293
SOS1B	23	3486	(45-312)	842 (75-1998)					(62)	(38)		

Stevens et al. (2006) Theor. Appl. Genet. 112:1593-1600

Expression and evolutionary relationships of the *quinoa* 11S seed storage protein gene

Balzotti et al. (2008) Int. J. Plant Sci. 169:281-291

Glimpsing the Genome: BAC end sequencing & SSR development

Maughan et al. (2008) Crop Sci. 48:85-94

Four samples from each of the 96 384-well plates – bidirectionally sequenced.

Number of Samples*	768
Number of Successful Samples	748
Ave. No. of HQ Bases	747 bp
Total Length of Sequence	563 Kb
GC content:	35.12%
Retroelements: LINE (L1/CIN4) LTR (Copia/Gypsy)	37 (2.84%) 5 32
DNA transposons: Hobo, En-Spm, MuDR	3 (0.07%)
Simple sequence repeats: (TA) _n ; (TAA) _n ; (TAAA) _n ; (TAAAA) _n	66

Transposable elements:

The fraction of predicted repeat sequences identified is low for a complex genome and suggests that *Amaranthus* may possess unique repeated sequences not detected by comparisons to *Arabidopsis* repeat database.

SSR development:

Enriched three libraries: AAT, AAC, AC

- 1457 clones sequenced (2% not readable)
 - ▶ 487 AAT library (45% unique)
 - ▶ 482 AAC library (27% unique)
 - ▶ 488 to the AC library (28% unique)
 - High number of AAT motifs observed in related species: *C. quinoa* and *B. vulgaris* (Mörchen et al. 1996, Mason et al. 2005, Jarvis 2006)

Microsatellites (SSRs) - Cost and limited availability

Mallory et al. (2008) Crop Sci. 48:1098-1106

Screened all SSRs 8 panel of grain amaranths (Panel A) Ran polymorphic primers on full panel of 36 amaranth accessions (Panel B) Quantified polymorphism using data from gels and checked for normal Mendelian segregations (Panel C) Analyzed phenetic relationships among species using PAUP

SSR development: Library enrichment & sequencing (\$5000) SSR dpt cost: \$0.35-0.50

	Grain àmaranth _{S*}		A. cruentus	A. caudatus	A. hybridus	
lumber of ccessions	28	10	9	9	5	
SRs	179	129	123	136	160	
otal Alleles	731	344	321	3/1	472	
NA Range	2 to 8	2 to 5	2 to 6	2 to 6	2 to 5	
verage ONA	4	3	3	3	3	
	0.14 to	0.18 to	0.12 to	0.10 to	0.18 to	
l-value range	0.83	0.74	0.78	0.77	0.80	
SRs H > 0.7	59	4	6	8	29	
verage H	0.62	0.49	0.49	0.50	0.56	

Development of SSR markers

32 genotypes – the CIP international nursery (A. Mujica)

QAAT76, QCA57 and QCA58. Run on 3% Metaphor agarose for ~4 hours at 150V. Ladder bands in lanes 1 and 34 are 208 and 200bp. 'BaerII' is in lane 33 and *C. berlandieri* in lane 2

>400 SSR markers available

Mason et al. (2005) *Crop Sci.* 45:1618-1630 Jarvis et al. (2008) *J. Genetics* 87:39-51 RU-2

G-205-95 Salcedo-INIA

Phylogenetics Mallory et al. (2008) Crop Sci. 48:1098-1106

The dendrogram (NJ) shows monophyletic origin for all three grain species. The individuals in the tree are identified by the last three digits of the accession number, location, and are color-coded by species.

Other molecular and hybrid fertility studies *A. hybridus* is closest putative progenitor *A. powellii* is most divergent in the complex

> Actually appears that a new third hypothesis predicting independent domestication may explain the evolutionary origins of Amaranth!

605 Illinios

⊳

⊳

⊳

⊳

⊳

⊳

Assessment of Available Quinoa Germplasm

- Used fluorescence-tagged SSRs and SNPs
- 152 accessions of C. quinoa
- 36 SSR loci comprising 432 alleles
 - ranging from 5 to 28 per locus
- 1st cluster consisted of accessions
 - Andean highlands of Peru, Bolivia, Ecuador, Argentina, and extreme northeastern Chile
- 2nd cluster contained accessions
 - Lowlands of Chile and those collected by Emigdio Ballón
- The CIP-FAO collection represents quinoa's genetic diversity within the clusters

Fuentes et al. (2009) Conserv. Genet. 10:369-377

The two-dimensional scaling resulting from the PCA analysis of 150 *Chenopodium quinoa* accessions using genetic diversity data from 36 microsatellite markers. Circled areas represent the major highland and lowland clusters identified in the dendrogram. Accessions are coded for their country of origin as described in the legend. Blackened symbols indicate accessions from CIP-FAO and PROINPA collections.

Genetic Linkage Map Construction: Population Selection

- Four phenotypically diverse potential mapping parents were screened AFLP markers to assess genetic diversity.
 - 597 polymorphic bands scored across the four potential parents.
 - ▶ 19 -52 bands detected/primer pair
 - ▷ ~6 polymorphic bands/pc
- Three diverse population derived from two way crosses of four parents were developed to produce a chain population.
 - KU-2 X 0654, 0654 X Chucapaca, Chucapaca X NL-6
- KU-2 X 0654 was selected to be used to make the preliminary genetic map of quinoa using AFLPs
 - All other populations are being selfed to form RIL populations

Plant characteristics of the genetic materia	I utilized as potential mapping parents.
--	--

Similarity matrix of potential parents.

Genetic Material	Plant Color	Seed head type	Saponin (cc) ¹	Seed Size ²	Maturity ³	Country of Origin	0654	KU-2	Chucapaca	NL-6
0654	Red	Amaranthiform	10.0	0.31	150 days (Semi-late)	Peru (Altiplano)	-			
Ku-2	Green	Glomerulate	10.3	0.28	135 days (Semi-early)	Chile (Costal)	0.304	-		
Chucapaca	Red	Glomerulate	0.0	0.36	154 days (Semi-late)	Bolivia (Altiplano)	0.576	0.229	-	
NL-6	Purple	Glomerulate	10.5	0.22	130 days (Early)	Chile (Costal)	0.327	0.866	0.245	-

Jarvis et al. (2008) Simple Sequence Repeat Development, Polymorphism and Genetic Mapping in Quinoa (Chenopodium guinoa Willd.). J. Genetics 87:39-51

(19)

Nepal Translucent perisperm New Jersey, USA **Dropping** inflorescence Translucent perisperm Drooping inflorescence Green seedling Red seedling Seed weight: 0.042 g Seed weight: 0.05 g Plant height: 200 cm Plant height: 200 cm Green panicle 6% Ames 15170 PI 553073 🝼 (7)Level of polymorphism as 84% determined by 73 47% (9) microsatellites % polymorphic markers Mutant (No. of F₁ plants identified) 81% 47.9% PI 618622 ¥ PI 642741 🗗 PI 481125 ¥ Bolivia No Passport data India, Palampur, Kangra Translucent perisperm Opaque perisperm Opaque perisperm Drooping inflorescence Erect inflorescence Erect inflorescence Green-orange seedling **Red** seedling Green seedling Seed weight: 0.07 g Seed weight: 0.12 g Seed weight: 0.09 g Plant height: 275cm Plant height: 250 cm Plant height: 215 cm (1*) *mutants (6)

Genomic reduction & SNP discovery by sequencing

Maughan et al. (2009) Plant Genome 2: 260-270

Cronn R, Knaus B, Liston A, Maughan PJ, Parks M, Syring J, Udall J (2012) Targeted enrichment strategies for Next-Generation plant biology. *Am. J. Bot.* 99(2): 1–22

Well Categories	
Status	
🗢 🗹 Passed Filter	
🗢 🗹 No Key	
🗢 🗹 Failed	
♥ Control DNA	
Flows	
Show All	
25 PPI 30 T 31 A 32 C 33 G 34 T 35 A 36 C 37 G 38 T 39 A 40 C 41 G 42 T 43 A 44 C 45 G	
46 T 47 A 48 C 49 G 50 T 51 A 52 C 53 G 54 T 55 A 56 C 57 G 58 T 59 A 60 C 61 G 62 T 63 A 64 C 65 G 66 T	

DNA Sequence Assembly

€€	👯 Con	itig Edit	:or: -1	L SRR03	30257.78	7415/2												×
Cons 2	÷	Qual	0 🔹	🗐 Ins	ert Edit I	Modes >	> 🗆 Cut	offs U	ndo Nex	t Searc	h Comma	ands >>	Settings >>			Q	uit Help	3 >>
<< [< (>	>>			1												
				0	47540	0	47541	0	47542	0	47543	0	475440	475450	475	5460	47547	71
+17	NC_	01296	7	aaag	gcgago	acaag	gccgc	caaca	aatggt	ggtga	ataagc	*gggg	tggcgtga	tgcattcc	gtctcct	tttcct	gtggt	t 🗌
+79110	cei	r_sxa	_62_	aaag	gcgago	acaag	gccgc	caaca	aatggt	ggtg	ataagc	*gggg	tggcgtga	tgcattcc	gtctcct	tttcct	gtggt	t 🛛
+79111	_ce	r_sxa	_2_	aaag	gcgagc	acaag	gccgc	caaca	atggt	ggtga	ətaagc	*gggg	tggcgtga	tgcattcc	gtctcct	tttcct	ggtggt	Ł
+79112	2 _ce	r_sxa	_125_	aaag	gcgago	acaag	gccgc	caaca	aatggt	ggtga	ataa							
+79113	Cer	r_sxa	_262_	aaag	gcgago	acaag	gccgc	caaca	atggt	ggtga	et.							
+98100	SRR	03025	7.1749		C	ACAAC	GCCGC	CAAC	AATGGT	GGTG	ATAAGC	<mark>G</mark> GGGG						
-98101	SRR(03025	7.2467			CAAG	GCCGC	CAAC	AAIGGI	GGIG	ATAAGC	<mark>G</mark> GGGG	IG					
+98102	SRR	03025	/./650	1		AAU	iuuuu	CAACE	ALIGUI	GUIU	ATAAGU							
-98103	SKR	03025	7.7695	1		HU AC	166666		HILLUI		ATAACC							
-98104		03025. 03025	7.2488			HU	10660	CAAC					Tuul CCC					
-00100	CDD	03025. 02025	7.1001	1			100000	COOC	ATCCT	CCTC	ATAACC		uuu TCCCC					
+98102	SDD	03025	7 1201 7 1295			í f	1011100			GGTG		aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	TGGCG					
-98108		03025	7 2251			, c	3833388 18118		ATGGT	GGTG	ATAAGC	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	TGGCGT					
+98109	SRR	03025	7.3596				00000		ATGGT	GGTG	ATAAGC	66666	666					
-98110	SRR	03025	7.3066				GC	CAAC	ATGGT	GGTG	ATAAGC	GGGGG	TGGC G TGA	T				
+98111	SRR	03025	7.2170				Č	CAAC	ATGGT	GGTG	ATAAGC	GGGGG	GGG					
-98112	SRR	03025	7.3282				C	CAAC	ATGGT	GGTG	ATAAGC	GGGGG	TGGCGTGA	TG				
-98113	SRR	03025	7.4159	l i			C	CAACA	AATGGT	GGTG	ATAAGC	<mark>G</mark> GGGG	TGGCGTGA	TG				
+98114	SRR	03025	7.1502					CAACA	AATGGT	GGTG	ATAAGC	<mark>G</mark> GGGG	TGGCGTGA	TGC				
-98115	SRR	03025	7.2403	:				CAACA	AATGGT	GGTG	ATAAGC	<mark>G</mark> GGGG	TGGCGTGA	ITGC				
-98116	SRR	03025	7.2498					CAACA	AATGGT	GGTG	ATAAGC	<mark>G</mark> GGGG	TGGCGTGA	TGC				
+98117	SRR(03025	7.2410					ACA	AATGGT	GGTG	ATAAGC	<mark>G</mark> GGGG	TGG					
-98118	SRR(03025	7.3463					ACA	AATGGT	GGTG	ATAAGC	<mark>G</mark> GGGG	TGGCGTGA	TGCAT				
+98119	SRR	03025	7.3446					Cí	AATGGT	GGTG	ATAAGC	<mark>G</mark> GGGG	<mark>G</mark> GG					
-98120	SRR	03025	7.1509					f	ATGGT	GGTG	ATAAGC	GGGGG	TGGCGTGA	TGCATTC				
+98121	SRR	03025	/.2478					ſ	ALGGT	GGTG	TAAGC	GGGGG	TGGCGTGA					
-98122	SRR	03025	/.1/08					~~~~	AIGGI	GGTG	HIAAGC	uGGGG	TGGCGTGA					
	CON	SENSU	5 -**-	AAAG	GCGAGC	ACAAL	սեննեն	LAACA	AATGGI	6616	HIAAGC	սնննն	TGGCGTGA	ITGUALICU	GIUIUUI	писи	161661	<u>IV</u>

Tag type:Fgen Direction:+ Comment:"/gene=ybaL :: /locus_tag=ECB_00429

(9)

Nepal New Jersey, USA Translucent perisperm Translucent perisperm **Dropping** inflorescence Drooping inflorescence Green seedling Seed weight: 0.042 g Red seedling Seed weight: 0.05 g Plant height: 200 cm Green panicle Plant height: 200 cm 6% Ames 15170 ¥ PI 553073 🝼 140 SNPs (7)Level of 11,047 SNPs 5,433 SNPs polymorphism as 84% 47% determined by 73 microsatellites % polymorphic markers **Mutant** (No. of F₁ plants identified) **SNP** identified 11,038 SNPs PI 642741 🗗 PI 481125 ¥ 81% Bolivia India, Palampur, Kangra Opaque perisperm Opaque perisperm Erect inflorescence Erect inflorescence **Red** seedling Green seedling Seed weight: 0.12 g Seed weight: 0.09 g Plant height: 250 cm Plant height: 215 cm

(19)

(6)

Maughan et al. (2011) *Plant Genome* 4:1-10

No gel electrophoresis! Closed tube! Robot compatible! Cost per datapoint: \$0.14 + initial primer cost of ~\$12 TaqMan: \$318/assay + taq polymerase costs

Fluidigm (96.96) Nanoscale Genotyping

Fluidigm (96.96) Nanoscale Genotyping

9,216 Simultaneous PCR Reactions

Reagent cost per datapoint: \$0.001 Chip + reagent datapoint: \$0.05 (Still an initial 15\$ per primer cost)

SNP Map and Diversity Results

PI481125 X PI642741

- $\checkmark\,$ Extracted DNA from 134 $\rm F_2$ Individuals and 46 diversity individuals.
- ✓ 480 putative SNPs screened, 419 (87%) were successfully converted and genotyped using the Fluidigm platform.
- ✓ 1,072 dtps were run in duplicate => 2% mismatches.
- ✓ Linkage mapped spanned 1317cM across 16 linkage groups (2n=32).

AM20845

AM19839

A 16 group linkage map constructed from an interspecific *A*. hypochondriacus X A. caudatus F_2 population (2*n*=32). Distances are shown centiMorgans (cM). SNP loci showing segregation distortion (*P*<0.001) to PI 642741 or PI 481125 are identified with blackened or shaded boxes, respectively.

UPGMA Dendrogram and PCO analysis

	Sample Size	10				
	Total SNP Screened	480				
4. C	Total SNP Pass QC*	414				
auo	Polymorphic SNP	136 (28%)				
atu	Highly Polymorphic	54				
S	H Range	0.10 - 0.5				
	Average H	0.09				
A	Sample Size	11				
. hy	Total SNP Screened	480				
poc	Total SNP Pass QC*	414				
hon	Polymorphic SNP	186 (39%)				
Idria	Highly Polymorphic	76				
acus	H Range	0.09 - 0.5				
0	Average H	0.13				
	Sample Size	10				
	Total SNP Screened	480				
A. c	Total SNP Pass QC*	414				
rue	Polymorphic SNP	35 (7%)				
ntus	Highly Polymorphic	10				
0)	H Range	0.10 - 0.5				
	Average H	0.02				

Across all species, 296 markers were highly polymorphic (average H = 0.37)

Quinoa Genetic Linkage Map Construction

KU-2 X 0654 was selected to be used to make the preliminary genetic map of quinoa using AFLPs - other populations are being selfed to form RIL populations

Plant characteristics of the genetic material utilized as potential mapping parents. Similarity matrix of potential parents.

Genetic Material	Plant Color	Seed head type	Saponin (cc)	Seed Size	Maturity	Origin
0654	Red	Amaranthiform	10.0	0.31	150 days (Semi-late)	Peru (Altiplano)
Ku-2	Green	Glomerulate	10.3	0.28	135 days (Semi-early)	Chile (Costal)

An 18 group linkage map constructed by combining Ku-2 X 0654 RIL population. Segregation distortion is shown using the p-value from testing segregation distortion using a purple to red scale (yellow/orange/red colored markers are distorted).

Genetic Diversity

Simultaneous multi-clone identification: BAC 7-Plate Super Pool

Sequence and verify

NP Target Name	Positive BAC Clone Address	No. Reads	No. Bases	Contigs (>500 bp)	N50 Contig Size (bp)	Max Contig (bp)	Number of Bases	BLASTn E-value
AM18081	1604	28417	11346335	14	52842	58444	187937	9.65E-101
AM20886	1241	58578	21913991	15	25282	57023	181556	6.68E-111
AM21120	3L14	12523	4717010	8	124794	124794	235849	5.36E-109
AM21773	6M9	38937	14568922	15	23276	54030	125585	1.90E-113
AM22193	13G11	13529	4999229	15	30565	40572	206077	7.58E-111
AM23006	15011	9887	3722293	9	30149	66008	184367	6.79E-111
AM23895	9N2	26614	9798881	4	48808	56894	181431	9.33E-101
AM25953	3L19	30301	11263931	7	147194	147194	164652	6.10E-111
			Average:	10.9	60364	75620	183432	

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

RNAseq and EST libraries - Greenhouse Set Up

- Using a random block design I planted four pots of each cultivar: DS- Ingapirca (Ecuador) and DT- Ollague (Bolivia)
- Each of the four pots represented a estimated drought treatment: 100% Field Capacity (FC), 50% FC, 30% FC and 10% FC
- Each set-up was replicated three times
- Different drought treatments applied at day 23

Labeled cDNA Libraries Sequenced

Replicate	Replicate 1				Replicate 2						Replicate 3													
Variety	Ingapirca			Ollague				Ingapirca			Ollague			Ingapirca			Ollague							
Treatment	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Sequencing Lane	5	5	5	5	5	5	5	5	5	3	5	3	5	3	3	3	5	3	3	3	3	3	3	3
cDNA construction sample number	X 2 1	X 1 9	X 2 3	X 2 4	X 1 7	X 2 0	X 1 8	X 2 2	X 1 6	X 1 0	X 1 3	X 0 8	X 1 4	X 0 4	X 1 2	X 0 3	X 1 5	X 0 6	X 0 5	X 0 1	X 0 7	X 1 1	X 0 9	X 0 2

	Reads	Total bp
Lane 3	191,304,208	
Lane 5	194,006,856	
Total	385,311,064	19.27 Gb
After trimming	373,835,465	

The combined assembly produced **20,337** unique consensus sequences (contigs), with contig read length ranging from 201 to 18,777 bp with an average length of 525 bp. (Publically available from GenBank SRA #SRR799899 and SRR799901).

462 genes were differentially expressed based on treatment

Raney et al. 2013 (M.S. Thesis, BYU HBLL)

A: Biological process; B: Molecular function; C: Cellular component

27 Genes were differentially expressed between the varieties (example genes)

Gene	Product	Function
Comp42593_c0_seq1	Naringenin,2-oxoglutarate 3- dioxygenase	Catalyze intermediates used to synthesis flavonoids
Comp1839_c0_seq1	Serine threoine-protein kinase rbk-1-like protein	SnRK2.6/OST1 (<i>Arabidopsis</i> <i>thaliana</i>)- main effector in the hydric stress response (drought-tolerance mechanism)
Comp56807_c0_seq1	Chaperone-1-like protein	Response to high light intensity and heat
Comp42870_c0_seq1	Heat-shock protein	Associated with photosynthetic acclimation under drought stress
Comp1469_c0_seq1	Pathogenesis related gene protein	Increase of these protein types have been associated to various abiotic stress (drought included)

2013 – First year of field trials (WSU – Kevin Murphy); Three RIL populations

BYU 1875

WASHINGTON STATE

I JNIVERSITY

The Future (~18 months) – Complete Draft Genome Sequence (at least amaranth)

Come visit Utah!

Brigham Young University

Craig Coleman, Dan Fairbanks

Rick Jellen Mike Stevens Josh Udall Melanie Mallory

Derrick Renyolds, David Elzinga Rozura Vivas-Hall, Nate Barney Kyle Nielson, Tina Lam Scott Smith, Zac Danielson Kyle Nielson, Alicia Barreda (ETC.)

Fundacion PROINPA Alejandro Bonifacio Jorge Rojas

Stephen F. Austin State University

Donald Pratt Kiel Kietlinski

Amplicon Express Keith Stormo

Universidad Nacional Agraria

Luz Gomez-Pando Anna Guiluz de al Barra Alicia Barreda

Arizona Genomics Institute

Nick Sisneros Meizhong Luo Dave Kudrna Rod Wing

University of Illinois Pat Tranel

Funding Agencies

Benson Institute for Food and Agriculture

Holmes Foundation

McKnight Foundation (CCRP)

National Science Foundation (MRI/ Exploratory grants)

