

Do you have varieties that are adapted to your...

- climate?
- soils?
- production system?
- specific markets?

 $\overset{\text{ORGANIC}}{\text{SCE}} \hspace{-0.2cm} \hspace{$

If so, do you have a reliable source of seed?

- OP that is well-maintained?
- OP that is high quality seed?
- F1 that is a mainstay variety?
- F1 that is well-maintained?
- F1 that is high quality seed?
- Is it organically grown??????

Seed Supporting the ethical development and stewardship of seed.

On-Farm Plant Breeding

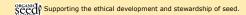
Typical Traits to Evaluate

- Plant height
- Plant stature
- Leaf type
- Days to maturity
- Harvestable yield
- Color
- Flavor/texture
- · Storage life

Traits to Consider for Organic

- Seedling Vigor
- Pest Resistance
- Disease Resistance
- Weed
- Competitiveness
- Nutrient Scavenging
- Specialty Markets
- Drought Tolerance
- Heat/Cold/Wind Tolerance

seed!


On-farm breeding methods should be...

- Easy for the farmer to execute:
 - -minimum (or no) hand pollinations
 - -minimum note taking
 - -minimum # of pedigee seeds lots
- Deliver a reasonable amount of gain for selection per cycle
- Retain adequate genetic variation for further selection/adaptation, yet have adequate uniformity for the marketplace

Supporting the ethical development and stewardship of seed
--

Breeding in a nutshell

- Choose the right crop
- Learn the reproductive biology
- Establish breeding goals
- Conduct trials
- Identify useful variation
- make crosses if necessary
- you don't always need to cross!
- Fix important traits in a population

Choose the right crop

- Is it important to you?
- Do you love it?
- Can you produce seed in your climate?
- Does it fit into your system?
- Selfers vs crossers

Supporting the ethical development and stewardship of seed.

Reproductive Biology

	Selfers	Crossers
Isolation	Less	More
Crossing	Harder	Easier
Self-pollinating	Easier	Harder
Inbreeding depression	Less Likely	More Likely

Supporting the ethical development and stewardship of seed.

Identify breeding goals

- Quality
- -specific traits
- Adaptation
- -climate/system
- Vigor
- -seedling/more?
- Resistance
- -disease/heat/cold/drought

Supporting the ethical development and stewardship of seed.

Start with trials

- Evaluate potential varieties
- Is there a variety that already works?
- Is there a variety that *almost* works? (To cross or not to cross, that is the question!)
- Are there two varieties, when combined, that might work?
- · Know your germplasm!
- Learn the fundamentals of conducting trials:
 "On-farm Variety Trials: A Guide for Organic Vegetable, Herb, and Flower Producers" M. Colley and J. Myers. OSA Bulletin

 $\stackrel{\text{ORGANIC}}{\text{SCECT}}$ Supporting the ethical development and stewardship of seed.

If a cross is necessary then start with a strain cross

- 50-100 plants per variety
- Select 20-30 best before flowering
- Harvest bulk seed from each
- Allow progeny to intermate 1-2 seasons

SECO Supporting the ethical development and stewardship of seed.

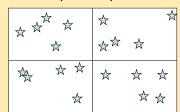
On-farm selection methods

- Mass Selection simplest and most widespread form of plant breeding, can be effective over the long term but is slow!
- Progeny Selection a fairly simple trick that can speed the breeding process up if used in ways that best fit the reproductive biology of the crop

Mass selection

Selecting individuals from a population

Tips:


- Select before pollination (if possible)
- -Large population
- -Uniform conditions
- -Select from quadrants

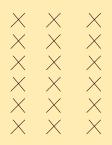
Supporting the ethical development and stewardship of seed.

Mass selection

· Select evenly from quadrants

Second Supporting the ethical development and stewardship of seed.

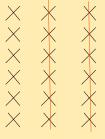
P	rnc	ıen۱	/ 50	lection	ı - stei	า 1
	100				ı step	, ,



- Select minimum 50 plants from pop.
 - Save seed in individual bags
 - Plant 50 individual rows x 2 reps. in the next season

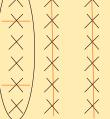
 $S_{\rm C}^{\rm RGANIC}$ Supporting the ethical development and stewardship of seed.

Progeny selection - step 2


• Select 15-20% of best families based on both reps.

SECOND Supporting the ethical development and stewardship of seed.

Progeny selection - step 2


- Select 15-20% of best families based on both
- Eliminate poor families

Supporting the ethical development and stewardship of seed.

Progeny selection - step 2

- Select 15-20% of best families based on both
- Eliminate poor families
- Eliminate 30-40% poorest plants from selected rows
- Allow remaining plants to intermate
- Bulk within families

 $S_{\rm e}^{\rm organic}$ Supporting the ethical development and stewardship of seed.

Progeny selection - part 3

- Plant selected families
- Evaluate
- Bulk as variety if satisfied, or...
- Repeat progeny selection if necessary

SECOND Supporting the ethical development and stewardship of seed.

Progeny selection vs. mass selection

Mass selection	Progeny selection	
Slower	Faster	
Easier	More difficult	
No family information	Families give you insight into hidden genetics	
No record keeping	Must maintain separate families	
Supporting the ethical development and stewardship of seed.		

On-Farm Breeding Example: Nash's Red Kale

- · Red-purple curly kale
- Downy Mildew resistant
- · Upright stature
- Overwintering
- · Vigorous regrowth
- · Tender and flavorful

Second Supporting the ethical development and stewardship of seed.

Redbor F1: market standard

Cross and Mass Selection:

- Two red plants in large field of 'Vates Dwarf Scotch Curled' Kale
- Crossed with much taller Brussels Sprouts
- 10 years of mass selection (1997-2006)

 $\underbrace{S_{C,C}^{\text{RGANIC}}}_{\text{Supporting the ethical development and stewardship of seed.}}^{\text{RGANIC}}$

2008: A signature crop

Qualities:

80-90% true to type OP

Compared to Redbor:

- •Better flavor
- More tender
- More cold tolerant
- Better Downy Mildew resistance

 $\overset{\text{QRGANIG}}{\underbrace{\text{Supporting the ethical development and stewardship of seed.}}}$

Progeny Selection

In 2008: selected best 50 plants

- Quality traits = leaf type, curl, texture
- Stature
- Color
- Cold hardiness
- Allowed 50 plants to intermate
- Saved seed into individual bags
- Planted 50 short progeny rows in 2009

Progeny Selection

Evaluation based on progeny row performance

Eliminated:

- •Rows with green plants
- •Rows with poor curl
- •Rows with poor stature
- •Rows with early bolters

ORGANICA	ð.

Supporting the ethical development and stewardship of seed.

Present Population

- •Resulted in 13 all red rows
- Seed harvested as single row bulks
- •To be planted as 13 x 2 rows and evaluated again.

 $\underbrace{Secand}_{\text{ORGANIC}} \emptyset \text{ Supporting the ethical development and stewardship of seed.}$

OP Dark Green Zucchini Participants: Bill Reynolds, Eel River Produce & John Navazio, OSA

Zucchini breeding goals:

- ➤Dark green fruits (high lutein content) ➤Cylindrical, ridged shape
- ≻Vigorous plants productive in dry-farm conditions
- ➤Open canopy
 ➤Bush habit
 ➤Spinelessness

- >Productive

Black Beauty

- Open-pollinated variety
- Dark fruit
- Extensive rooting system
- Long harvest season

But...

- Has closed canopy
- Many off type fruit: bulbous, tapered, curved
 - Only 20-25% plants "Grade A" fruit

History of Black Eel Zucchini (1998-2003)

Raven F1' X 'Black Beauty' Population Development

Bill grew field with a large field of Raven & Black Beauty / harvested lbs. of seed (1998)

Drilled large population (20,000 seeds) on 2 acre field and thinned in 3 rounds of selection; 1) vigor, 2) plant type, 3) fruit type / for 4 yrs

This 4 yrs of mass selection produced 'Black Eel' OP / "Seeds Of Change" variety

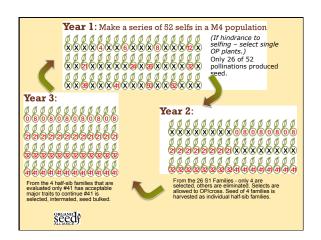
organica)

Resulted in 'Black Eel'

Self Pollination and Progeny Testing Participatory On-farm Breeding

Season 5 attempted selfs on 50 best plants (2003) / 26 successful selfs

Saved seed of 26 in separate bags. Each bag = full-sib family.


Planted 26 full-sib family progeny rows in Season 6 (2004) – 4 selected

Planted 4 half-sib families in Season 7 (2005); only 1 half-sib family selected and bulked

Mass selection to increase seed in Season 8

seed)

2006 Baja Zucchini Trial

Tested by large zucchini grower

- •Resilient population
- •Yielded 5-6 weeks longer than 'Raven'
- •Male flowers until the end
- ·Stocky, open plants
- •Low spines
- •Less Virus and Powdery mildew symptoms
- •More variable than F1's, but "stable" yield

2007 - 2011

- · Maintained via mass selection
- Alternate stock seed and production seed years
- Increased acreage in Baja
- Winter 2010-2011: freeze in Baja, 'Dark Star' was the only Zucchini in Whole Foods for most of February

SECOND Supporting the ethical development and stewardship of seed.

Participatory sweet corn breeding in Minnesota

Martin Diffley, Gardens of Eagan & Dr. Bill Tracy, University of Wisconsin

Background:

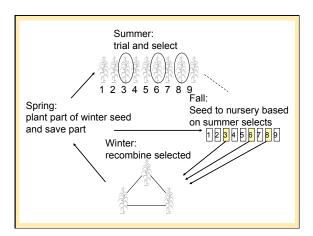
- "Temptation" was choice for spring planting
- Fewer good seed sources

Martin's needs:

- Cold germinationEarly vigorGood husk protectionDisease resistanceEating quality

- 2 separate populations
- Each from 4 hybrids
- Recurrent selection

Spring 2008:


- ~100 rows planted / population
- Each row from one ear
- Some seed from each ear also saved

Participatory Plant Breeding: 3 Examples			
Nash Huber's Red Kale			
• Martin Diffley's Sweet Corn • Bill Reynolds' Dark Star Zucchini			
ORGANIC SEE			