

Mixed Cover Crops for Soilborne Disease Suppression

• Goal 1: Assess grower knowledge and fill gaps with essential information on cover crops, inoculants, and tomato disease suppression

• Goal2 :Evaluate and enhance the effects of mixed species green manures on productivity and plant disease suppression in tomato

Extension/Outreach Goals

- Assess the needs and knowledge gaps of growers related to cover crop use, soilborne disease management, and microbial biopesticides
- Develop useful materials that enhance organic growers' capacities to better control soilborne diseases through the use of cover crops and microbial inoculants in vegetable cropping systems

Assessing Knowledge Gaps: 2011 Grower Survey

- Survey designed to quantify knowledge base and identify gaps in grower knowledge
 - Topical focus: Cover crops, disease management, inoculant/biopesticide use
 - 40 Multiple choice and 10 open-ended questions
 - 93 respondents (29% response rate) from throughout North Central and Northeastern Region
 - 71% vegetable farmers, with ~45% listing tomato as top crop in acreage and/or value, and 57% listed tomato as the crop with biggest disease problems

Survey Results: Cover Crops

- Majority of growers (68%) surveyed use cover crops
 - Mixed species cover crops were most commonly used
 - Perceived benefits varied by grower & CC choice
 - Significant limitations to effective use noted by growers
 - Seed and equipment cost, yield loss due to delayed planting and shortened growing season were most significant (>40% strongly agreed)
 - Fuel costs, limited growing options, and germination/establishment were also important (>25% strongly agreed)

Survey Results: Microbial Inoculants

- Nearly half of organic growers use microorganisms and/or biopesticides
 - 43% used inoculants and 49% used biopesticides
 - Inoculants for legume crops, but rarely cover crops
 - Biopesticides used mainly for foliar diseases and pests
 - 51% thought cost justified use, but 74% waited until after symptom appearance to make application

Bridging the Gap through Extension

- Published 6 New Online Fact Sheets
- Presented Multiple Workshops to Organic Growers
 - In cooperation with OEFFA (2011, 2012)
 - As part of annual Extension programming in MD, NY, and OH

Presented 2 Webinars through eOrganic

Source Disease Management in Organic Vegetable Control of the Source of the

Field Research Goals

- Evaluate the efficacy and value of mixed-species green manures in organic vegetable production
- Characterize the linkages between microbial community structure and soilborne disease suppression
- Evaluate mixed-species cover crops as vehicles for delivering enhanced suppression by microbial biopesticides

Field Studies of Cover Crops and Disease Suppression

- Main treatments
 - No, single and mixed cover crops followed by fresh market tomato cash crop
 - Rye, vetch, clover, tillage radish alone and in combination
 - 12 site years of data; 2 years x 6 fields (3 OH, 2 NY, 1 MD) analyzed to date

Field Studies of Cover Crops and Disease Suppression

- Responses measured
 - Soil fertility and organic matter
 - Crop growth, yield, and disease
 - Rhizosphere microbial population structure
 - Pathogens by macroarray
 - Fungal/bacterial populations by TRFLP

Productivity Varied More by Site & Year							
New York	tha	n Cove	er Croj	o Ireati	ment		
	Treatments	No cover	Rye	Turnip & Rye	Rye & Vetch	Clover & Rye	
Year	Field						
2010	West	17.62±0.29a ²	17.21±1.67a	14.08±0.50b	13.5±0.52b	13.18±0.36b	
	East	22.97±0.96	22.72±0.59	29.92±1.77	26.37±0.91	27.4±1.74	
2011	West	28.91±0.435a	29.445±1.0ab	23.76±0.13b	30.28±1.48a	25.04±0.71b	
	East	36.31±1.87	35.21±0.89	36.02±1.19	39.4±1.27	37.54±0.90	
Ohio							
	Treatments	Natural Hay	Rye	Radish fallow	Rye & Vetch	Vetch	
Year	Field						
2010	Fry	6.32±0.7	7.06±0.23	6.04±0.49	7.01±0.22	8.04±0.26	
	FryA	1.77±0.4	3.36±0.38	2.36±0.47	4.06±0.32	3.3±0.36	
	EB	4.76±0.21	3.49±0.26	3.89±0.32	4.66±0.22	4.62±0.31	
2011	Fry	14.8±0.5	15.88±0.6	15.77±0.63	13.4±0.51	15.31±0.71	
	FryA	12.3±0.34	11.09±0.21	12.14±0.22	11.75±0.14	10.99±0.28	
	EB	6.68±0.32	5.534±0.31	5.72±0.43	5.645±0.28	6.34±0.13	
Maryland							
	Treatments	No cover	Mixed Hay	Radish & Vetch	Rye & Vetch	Vetch	
Year							
2010		31.25±1.35b	33.98±1.15b	23.52±3.42a	20.68±2.97a	39.0±1.57b	
2011		97.62±2.44bc	93.25±1.89c	106.28±2.8ab	101.38±1.32abc	112.08±1.6a	

		Total S ¹ /	Total B ³ /
-	Productivity Measurements ⁴	Total ²	Total
2 vear	Marketable Yield (weight)	0/12	4/12
_ ,	Total Yield (weight)	0/12	4/12
Results	Shoot biomass 1	2/12	3/12
Summary	Shoot biomass 2	0/12	4/12
Summary	Soil pH	1/12	5/12
	Soil organic matter (%)	3/12	7/12
	Disease Ratings ⁵		
	Early blight	4/12	5/12
	Septoria blight	3/12	4/12
Field was reliable	Phytopthora blight	1/4	2/4
prodictor of CC	Leaf mold	0/2	1/2
	Late blight	0/2	0/2
performance in 5	Southern blight	0/2	1/2
of 6 instances	Bacterial Spot	0/3	0/3
	Inoculated Bacterial Spot ⁶	0/3	0/3
	Inoculated Bacterial Spot	0/3	0/3
	Inoculated Bacterial Spot	0/3	0/3
	Inoculated Bacterial Spot	0/3	0/3
	Plant Pathogenic Nematode Counts ⁷		
	Tylenchus spp. Time 1	0/2	1/2
	Aphelenchus spp. Time 1	1/2	1/2
	Total plant parasitic nem. T1	1/2	2/2

Percent of Roots Harboring Soilborne							
Pathogens of Tomato							
	Pathogen	NY2010	<u>OH2010</u>	MD 2010	NY 2011	<u>OH 2011</u>	MD 201:
Fusarium oxysporum	Fo	38	41	15	35	60	25
Alternaria alternata	Aa	14	35	7	21	54	29
Fusarium solani	Fs	7	4	1	6	27	18
Phoma destructive	Pd	10	19	3	13	36	22
Septoria sp.0599	S	8	11	5	2	27	7
Phytophthora capsici	Pc	1	-	_	_	_	_
Colletotrichum spp. Pythium	С	-	11	-	-	18	-

Colletotrichum spp.	C	-	11	-	-	18	-
Pythium							
aphanidermatum	Pa	-	4	-	-	-	-
Pyrenochaeta lycopersici	Pl	-	3	-	-	7	-
Pythium ultimum	Pu	-	9	10	-	-	-
Pythium crytoirregulare	Py	-	-	1	-	-	-
Rhizoctonia solani	Rs	-	2	-	-	15	7
Pythium irregulare	Pr	-	-	3	-	-	-
Verticillium albo-atrum	Va	-	-	2	-	-	-
Phytophthora nicotianae	Pn	-	-	-	-	1	-

Microbial Inoculation of CC

 Goal: Determine if CC can serve as a vehicle for delivering microbial inoculants, boosting their populations and beneficial activities

Field Research Summary

- Considerable year to year variation in field performance of CC at each location
 - No simple recommendation for mixed vs. single vs. no CC based on 12 site years of data
 - Response of organic tomato crop to CC additions dependent on timing of planting, incorporation and transplanting as well as site characteristics

Overall Summary

- Yield and Disease Responses have site-specific tendencies
 - Microbial properties also have some site-specific quality, but consistency of relationships to productivity and suppression within a site remains to be determined
 - Changes in crop health and disease suppression tend to be of small magnitude and limited predictability
 - Value of added microbial inoculation still under investigation

