

Research-based Practical Guidance for Organic and Transitioning Farmers

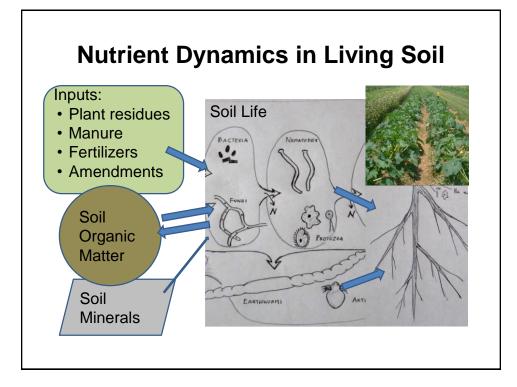
Diana Jerkins and Mark Schonbeck Organic Farming Research Foundation

Organic Farmer Research Priorities

ORGANIC FARMING RESEARCH FOUNDATION Soil Health – 74% Nutrient management – 66% Topics include:

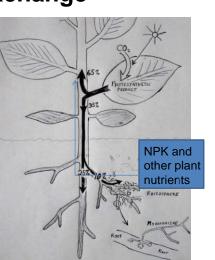
- Matching crop needs
- Minimizing nutrient losses.
- Nutrient efficient cultivars.
- Nutrients, soil life, and pest resistance.

Download full report at http://ofrf.org/.


Soil Health and Crop Nutrition

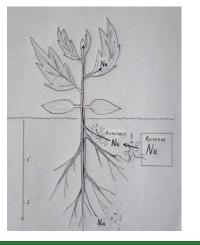
Healthy, living soils:

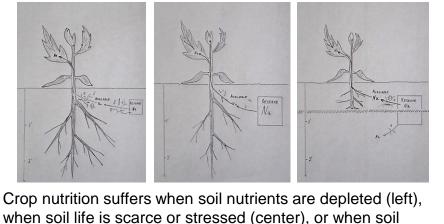
- Retain and recycle plant nutrients.
- Nourish crops from nutrient reserves in soil organic matter (SOM).
- Minimize nutrient losses, protect water quality.


"Feed the soil, and the soil will feed the plant."

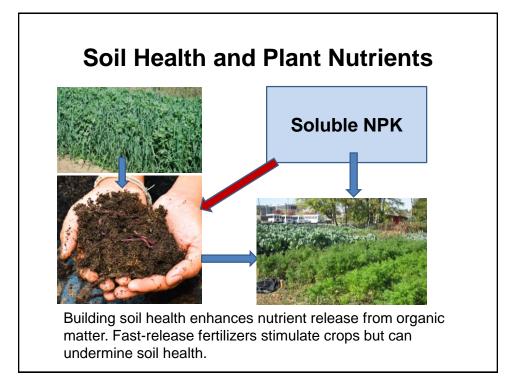
Two-way Exchange

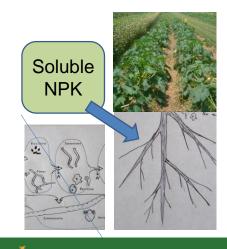
- Plants deliver 10 30% of their photosynthetic product to soil life.
- Beneficial microbes in the rhizosphere (root zone) enhance plant nutrition and health.
- Mycorrhizal fungi assist nutrient and moisture uptake and protect host plants from disease




Crop Nutrient Sufficiency

Healthy soil provides:


- Adequate nutrient reserves; favorable pH.
- Abundant and balanced soil life.
- Deep, open soil profile, allowing roots to explore large volume of soil.


Causes of Crop Nutrient Deficiency

when soil life is scarce or stressed (center), or when soil compaction restricts root growth (right).

20th Century Nutrient Management

ORGANIC FARMING RESEARCH FOUNDATION

- "Feed the plant":
 - Synthetic NPK
 - Other nutrients if needed
 - Lime for acid pH
- Soil life disregarded
- Rates determined by:
 - Expected crop response based on soil test
 - A little more added for "insurance."

Organic Nutrient Management, Step 1: Understand Essential Crop Nutrients

Major Nutrients

- Nitrogen (N) nitrate anion (NO₃-) or ammonium cation (NH₄+)
- Phosphorus (P) phosphate anions (HPO₄²⁻ and H₂PO₄⁻)
- Potassium (K) cation (K⁺)

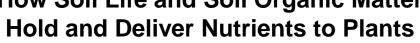
Secondary Nutrients

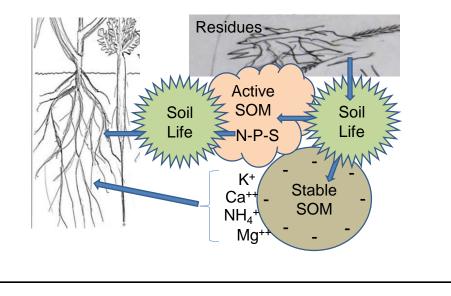
- Calcium (Ca) cation (Ca²⁺)
- Magnesium (Mg) *cation (Mg*²⁺)
- Sulfur (S) sulfate anion (SO₄²⁻)

Essential Micronutrients

Essential for crops:

- Boron (B) borate anion
- Copper (Cu) cation or chelate
- Zinc (Zn) cation or chelate
- Iron (Fe) cation or chelate
- Manganese (Mn) cation or chelate
- Molybdenum (Mb) molybdate anion
- Nickel (Ni) cation or chelate
- Sodium (Na) cation (Na+)
- Chlorine (Cl) anion (Cl)


ORGANIC FARMING RESEARCH FOUNDATION


Important for animal and human nutrition:

• Cobalt (Co), Selenium (Se), Chromium (Cr).

How Soil Life and Soil Organic Matter

Organic Nutrient Management, Step 2 Feed the Soil Life a "Balanced Diet."

Organic Nutrient Management, Step 3: Test the Soil

A standard soil test reports:

- pH (acidity)
- Plant-available P, K, Ca, Mg, some micronutrients
- % total SOM
- Cation exchange capacity (CEC)

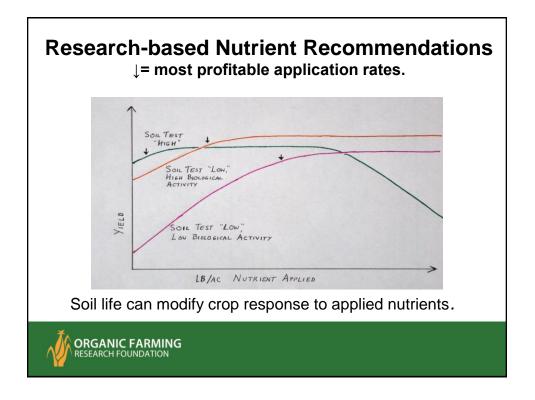
Additional tests available through some labs:

- Nitrate-N, potentially mineralizable organic N
- Active SOM
- Soil microbial respiration

Organic Nutrient Management, Step 4: Provide Supplements as Needed

Use organic and natural mineral nutrient sources (right) to:

- Restore depleted soils
- Remedy deficiencies
- Adjust soil pH
- Sustain crop yields
- Replenish nutrients removed in harvest


ORGANIC FARMING RESEARCH FOUNDATION

Nutrient Management Challenge #1: Translating Soil Tests to "Organic"

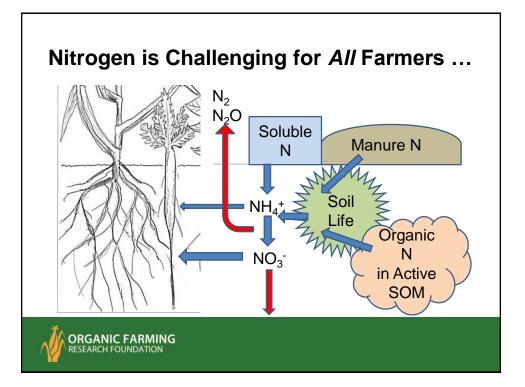
Standard soil test recommendations include:

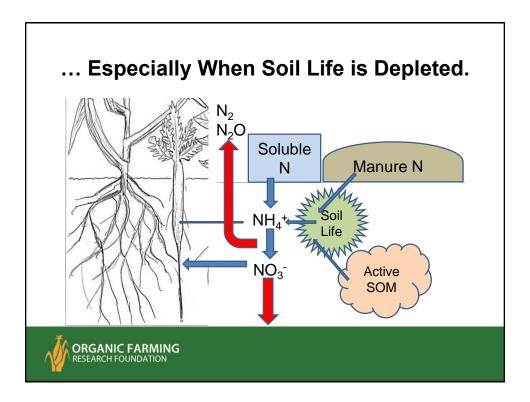
- Lime based on soil pH and buffer index.
- N based on crop only.
- P and K based on soil test P and K and crop grown. Challenges for organic producers:
- · Complex nature of biological nutrient cycling.
- Variable NPK contents of manure, compost, etc.
- Lack of research in organically managed soils.

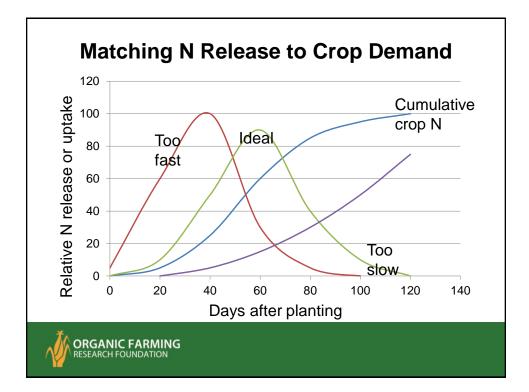
Nutrient Management Challenge #2: Nitrogen

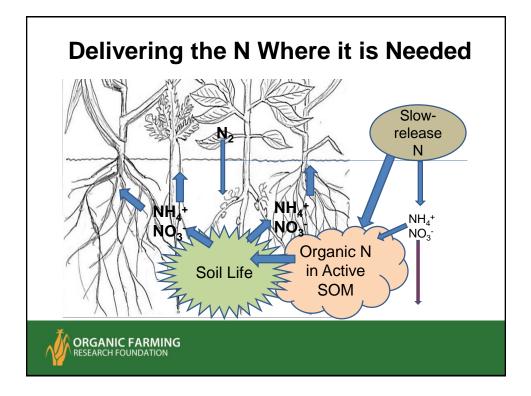
Organic crops are often N limited when:

- Soil life is depleted or out of balance.
- The field is newly transitioned to organic.
- N-poor residues like straw are tilled in.
- An early spring heavy N feeder is grown.
- Excessive rains leach soil N.
- Cold or dry soil slow biological N release.
- Crop cultivars have been developed in and for high-input conventional systems.


N deficiency in springplanted organic broccoli.


Nitrogen and Soil Health: Potential Tradeoffs


- Cover crops with reduced tillage build soil health, but can slow N mineralization and limit crop yields.
- Providing N in concentrated forms such as poultry litter can:
 - Leach nitrate-N to groundwater.
 - Increase N₂O emissions.
 - Accelerate SOM decomposition.
 - Deter beneficial plant root-microbe interactions.



Organic no-till snap beans show visible N deficiency.

Nutrient management challenge #3: Phosphorus

- Crops use 5 8 lb N for every 1lb P.
- Manure and compost provide 2 – 3 lb N per lb P.
- Using manure and compost to meet crop N needs can build excess soil P and:
 - Release P into runoff.
 - Inhibit mycorrhizal fungi.
 - Tie up micronutrients.

Heavy compost used to rebuild depleted soil can accrue P surpluses.

Nutrient management challenge #4: Intensive Multi-cropping, High Tunnels

Intensive multiple-cropping can:

- Deplete N and K.
- Consume SOM through tillage.
- Reduce residue return to the soil.

Using large amounts of compost to replenish soil can:

- Build up P, other nutrients.
- Build up salts in high tunnel.

High tunnels permit year-round production and pose special soil health challenges.

ORGANIC FARMING RESEARCH FOUNDATION

Goals of Organic Nutrient Management

- Maintain yields and quality.
- Protect soil health, water quality, and climate.
- Build soil capacity to meet crop needs with minimal input.
- Remedy soil nutrient deficiencies and imbalances.
- Replenish nutrients removed in harvest.
- Avoid or draw down nutrient excesses.

Abundant crops and clean waters.

Replenishing Nutrients: Vegetable Crops								
Сгор	Yield t/ac ¹	Lb/ac rem N ¹ , ² K ¹	noved: P ¹		Rec. r N K	ate, Ib/ P	/ac³	
Broccoli	5.6	20 – 53	7	36	175	22	42	
Lettuce	12.0	20 – 62	7	60	100	44	83	
Onion	19.4	28 – 73	11	60	85	22	42	
Squash	15.0	27 – 52	8	96	85	22	83	
Tomato	13.2	14 – 37	6	54	70	44	83	
Mixed compost (1-1-1) at 5 t/ac adds:					100	44	83	
Poultry litter (5-4-3) at 1 t/ac adds:					100	35	50	

Replenishing Nutrients: Field Crops

Crop	Yield	Nutrient r N K	emoval, Ib P	/ac					
Corn, grain	150 bu/ac	150	29	35					
Soybean, grain	50 bu/ac	190 ^a	18	34					
Wheat, grain	80 bu/ac	128	21	30					
Grass hay	5 t/ac	185	24	195					
Corn, silage	5 t (dry)/ac	170	31	183					
Compost (1-1-1),	100	44	83						
Poultry littler (5-4-3) 1 t/a Bradyrhizobium symbio35. 50									

Grain Crops May Need Little Fertilizer on Healthy Soils

- Corn-soy-wheat + cover crops
- SC coastal plain sandy soils
- With / without recommended P and K

Results

- Cover crops build SOM
- Full grain yields without added P or K, and 50% recommended N
- Little change in soil P or K

Standard soil tests & recommendations:

- Measure top 6
 inches only.
- Ignore soil biology.
- Assume soil is "leaky".
- Overlook nutrient recovery by cover crops.

"Living soil changes everything" Robin Kloot, 2017 Organic Agriculture Research Symposium, Lexington, KY.

ORGANIC FARMING RESEARCH FOUNDATION

Broccoli: a Nitrogen Hog?

In California, organic broccoli required 220 lb N/ac for optimum yield.

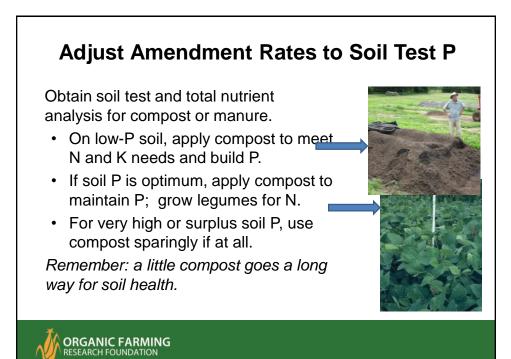
This much organic N:

- Leached ~180 lb N/ac.
- Emitted 17-42 lb/ac N₂O.
- Leached another 100 lb N/ac from tilled broccoli residues.

(U. California, Santa Cruz)

At Virginia Tech, organic broccoli required150 lb N/ac in addition to cover crop, for maximum yield.

Tight N Cycling in Organic Tomato

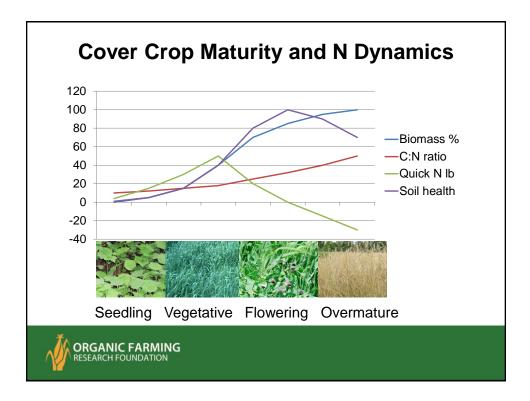

3 types of organic tomato fields in CA:

- N deficient low soluble N, low yield.
- N saturated high soluble N, high yield and high leaching risk.
- Tight N cycling low soluble N, high yield, minimal leaching risk.
 - Diverse organic inputs with low to high C:N ratio promoted tight nutrient cycling.
- (U. California at Santa Cruz)

Vigorous tomatoes grown on low-N compost.

ORGANIC FARMING

Cover Crops: a Vital Tool for Organic Nutrient Management


Cover crops:

- Feed soil life, build SOM.
- Fix N (legumes).
- Absorb and retain soluble N.
- Retrieve nutrients from subsoil, protect water quality.
- Enhance plant-available soil P (legumes, buckwheat) and K (grasses) when needed.
- Never aggravate P or K excesses.

Clockwise from top left: pearl millet, hairy vetch, buckwheat, four-way mix.

Cover Crop Types and N Dynamics Mix and match cover crops to manage nitrogen for production and environmental goals. LEGUME **CRUCIFE** MIX GRASS R High N fixation potential None Limited High N recovery Low-mod Very high Mod-high High Residue C:N ratio Low Low Moderate High Available N release Rapid Rapid Slow N tie-up N leaching & N O risk High High Low-mod Low ORGANIC FARMING RESEARCH FOUNDATION

Managing SOM: a Balancing Act

"Management of SOM to enhance soil quality is a key determinant of successful organic farming, which involves balancing two ecological processes: **mineralization** of carbon (C) and nitrogen (N) in SOM for short term crop uptake, and **sequestering** C and N in SOM for long term maintenance of soil quality."

Delate et al., 2015. *Sustainable Agric. Res. 4*(*3*)*: 5*-14.(Emphasis added)

ORGANIC FARMING

Zone Tillage: Releasing Nutrients Where They Are Needed

- Ridge tillage promotes early-season nutrient release in crop rows, leaving between-row soil undisturbed.
- High-residue cultivator moves organic residues into crop row, providing additional fertility.
- Other ways to concentrate nutrient release in the "grow zone" include:
 - Strip tillage.
 - Band application of fertilizer
 - In-row drip fertigation

Ridge tillage in a cornsoybean rotation

Zone Planting for Nutrient Management

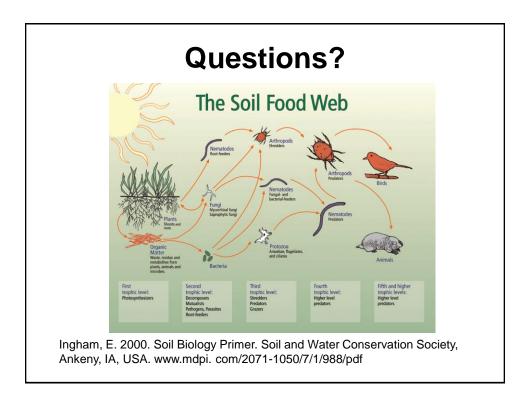
N-fixing forage soybean in "growzone" of a following broccoli crop with N-immobilizing, weed-suppressive sorghum-sudan in alleys.

- Planting legumes or crucifers in future crop rows with grasses in alleys can promote efficient use of N released from cover crop residues.
- Strip or zone tillage (grass alleys mowed or rolled) can further reduce N losses.

Summary: Best Organic Nutrient Management Practices

- Build and maintain healthy soil, grow cover crops.
- · Use perennial sod crops to restore soil fertility.
- Test your soil and organic amendments regularly.
- Use crop foliar analyses to supplement soil analyses.
- Adjust manure/compost rates according to soil P.
- Use organic nutrient budgeting tools.
- Do side-by side trials with/without organic fertilizers.
- Promote nutrient release in crop row (zone management).

ORGANIC FARMING RESEARCH FOUNDATION


Organic Nutrient Management Research Priorities

- Evaluate responses of a range of crops to N, P, K, and other nutrients in organic systems.
- Develop decision tools for organic N rates, considering crop, preceding crop, climate, soil type and soil condition.
- Explore tight N cycling in a wider range of crops, soils, and climates.
- Fine tune cover crop management to minimize N₂O.
- Breed and develop new crop cultivars for nutrient efficiency, and effective partnership with soil life.

