Biological Control of Whiteflies in Organic Squash

Prof. Oscar E. Liburd & Dr. Lorena Lopez

Entomology & Nematology Dept. Univ. of Florida, Gainesville, FL

Outline

- I. Brief introduction on whitefly biology and economic importance
- i. Common predators and parasitoids for management of whiteflies
- II. Strategies for biological control
- III. Preference studies with Delphastus catalinae in buckwheat and squash
- IV. Experiments evaluating release methods with Amblyseius swirskii
- V. Experiments with companion plants, sweet alyssum and Amblyseius swirskii

Whiteflies – Economic Importance

- Whiteflies, *Bemisia tabaci*, is an important pest of vegetable crops, including squash
- They injure plants by sucking cell sap, transmit viruses, and cause physiological disorders (Squash silverleaf disorder)
- Whiteflies are managed principally with soil applied systemic insecticides

Biological Control Agents for Whiteflies

Encarsia formosa prefers the third and fourth nymphal stages

Eretmocerus ermicus parasitoids prefers the second and third nymphal stages

Whitefly predatory ladybug

Delphastus catalinae (Insecta: Coleoptera: Coccinellidae)

- Specialist predator on whiteflies
- High prey consumption rates
- Long adult survival
- High reproduction rates
- Commercially available

Determine the best release method for the predatory mite, *Amblyseius swirskii* in field-grown squash

Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae)

- Attracted substantial interest as a biological control agent of mites, thrips, and whiteflies in greenhouse and nursery crops
- Very limited studies have been conducted under field conditions
- Prefer eggs and first nymphal stage of whiteflies

• Different formulations are available for the release of A. swirskii

Summary and Findings

- Delphastus catalinae reduced whitefly population in organic squash
- M-Pede and PyGanic were the best performing organic insecticides that were compatible with *D. catalinae*.
- These insecticides can be used 3 -5 days after field deployment of *D. catalinae*The use of companion plants increased the number of natural enemies in organic squash
- Amblyseius swirskii reduced whitefly population below the control treatment irrespective of the release methods
- The release methods did not affect the performance of A. swirskii in reducing whitefly population, viral infection, and organic squash yield

On-Farm Trials

How does predatory mites and flowering strips impact:

- Pest and predator distribution?
- Pest suppression?
- Organic squash yield?

Sweet alyssum intercropped with three summer squash varieties

Summary

- Predatory mites established and dispersed successfully regardless of the squash variety
- Sweet alyssum together with A. swirskii reduced aphid and whitefly populations, as well as silverleaf disorder in open field squash
- These combined practices reduced the need to spray pesticides during the season (reduced pest management costs)

Acknowledgements

USDA-NIFA Organic Agriculture Research and Extension Initiative (OREI), grant # AWD04921. Titled "Development and Implementation of Biological Control Tactics for Key Vegetable Insect Pests in the Southeastern US"

 All members of the Small Fruit and Vegetable IPM lab

