Participatory On-Farm Research: Beyond the Randomized Complete Block Design

Sieglinde Snapp, Michigan State University

January 31, 2012

http://www.extension.org/organic_production

Participatory On-Farm Research

Beyond the Randomized Complete Block Design

What is on-farm research?

Observations, evaluation of a new practice or variety, or a systematic comparison of management systems

Why participatory onfarm research?

Ensuring Relevance

Engaged co-learning

Quantifying G by E

<u>Genetics by environment</u> = evaluating performance of genetics (or technology) across multiple environments and testing for interactions

Researcher-Farmer Continuum Gonsolves et al., 2005

Objectives - take 1

Ensuring relevance

- Research stations historical management
 'legacy' so go on farm
- Systems research often requires real world systems so go on farm

Relevance:

Experimental designs for systems research

- Case studies
- Gradients across landscape e.g., chronosequence
- Paired farms
- Group of farms

Ensuring relevance

Paired sites on-farm

Reganold et al., 2010

Paired farms or fields

Natural experiments: 'Across fence row' comparison of two management systems, e.g., cover crop vs. manure-based fertility

Relevance: Analytical approaches

1. T-test of paired farms

• Test how variables respond on paired farms, e.g.: yield comparison between organic and conventional

- 2. Structural Equation Modeling (develop and test research questions)
- 3. Multivariate data analyses
- Multivariate approach allows simultaneous evaluation of relationships among many variables
- e.g.: soil and plant properties, yield traits, economics

Relevance: Analytical approaches

SEM model

- An SEM model is based on a composite hypothesis made up of a series of cause-effect relationships between variables

- Multivariate approach
 - Weighted Averages
 - Principal Component Analysis (PCA)
 Canonical Correspondence Analysis (CCA)

Characterizing complexity: GIS

Grids were established for monitoring potato fields using a Trimble Pro-XRS GPS receiver unit with real time differential correction. (Po et al. 2010)

Actual yield based on GPS yield monitor harvester vs predicted yield from stepwise regression equation. Yield = 59.3 + 0.7(250 m WSA) - 89.3(G/R_{unadj}) + 91.9(EC_a) R² = 0.60; Po et al. 2010

-2 0 2 Principal component 1

(Management component)

Group of on-farm studies analyzed by PCA. In this case, PCA distinguished between impact of soil type, and management (organic versus conventional) in tomato fields. Drinkwater et al. (1995)

Relevance:

Key points for on-farm studies

- Understanding on-farm variation rather than attempting to control all variables
- Choice of experimental sites on-farm is critical, choose representative sites and gradients or paired sites can be used
- EMBRACE COMPLEXITY: Use multivariate analytical approaches and GIS-based monitoring

Engaged learning

-4

- Learn together: iterative colearning to improve research
- Adaptive research: develop improved, relevant technologies
- Educate/enhance farmer capacity for experimentation & technology adoption

A few hints

- Do homework: review knowledge, agree on a shared agenda, develop research questions and options to test (some may participate at different levels)
- Invest in partnership building and education
- Facilitated discussions and brainstorm sessions
- Build in time for reflection
- Chose appropriate on-farm design and do NOT duplicate a research trial on-farm

Communication is key! First, last and always

Engaged on-farm research: Analytical approaches

- Adoption studies
- Impact assessment
- farmer and researcher capacity
- technology improvement (better bet options, improved research questions)
- System analysis
- radar or amoeba diagrams
- economic evaluations

Opportunities

http://www.sare.org/Grants/Grants-Information

Engaging Learning:

Key points

- Improved farmer capacity to experiment, innovate and adopt technologies
- Improved technologies and research priorities through documenting farmer assessment
- Systems comparisons

On-farm systems comparison using a 'radar chart'

Farmer ratings of system benefits

Swinton et al., 2011

Note: valaska and mawaii are not snown; organic pasurevrange in valaska accounts for so percent of the U.S. total. Source: USDA, Economic Research Service, based on information from USDA-accredited State and private organic certifiers.

Objectives - take three

G by E

- Genetics by environment = quantifying performance of genetics (technology) across multiple sites
- Environment = biological and socioeconomic context (farms)

G by E Analytical approaches

- Spatial analysis
- Mother and daughter' trials
- Latin Square design
- Adaptability analysis
- Non-parametric methods for paired comparisons with checks
 - Wilcoxon's signed rank test

Design approaches: 1) Latin square design 2) Replicate one treatment per daughter trial

Spatial Experimental Design Field

On-farm monitoring

Michigan State University Field Trial Recording Form, 2010-2011

ORGANIC DRY BEAN PRODUTION SYSTEMS Cooperator name: _______ Treatments: PHYSICAL DESCRIPTION County: ______ Township: ______

Michigan State University Field Trial Recording Form, 2010-2011

LEARNING OPPORTUNITY

PRE-TRIAL

What are you expecting to learn from this trial experience?

Taylor et al., 2011

Farmer ranking 'pairwise'

Nearest crossroads: ____

Farmer name:	 Location of field experiment:

Farmer expert: Yes	No	Farm size:	(acres farmed)
Market: Local	Wholesale		Major crops:

Ranking	g of technologies	Fill in with letter of technology which is better (for example: if the farmer thinks that B. Strip till is better than C. Ridge tillage, fill in B in the square). There should be one letter in each square.							
		A	В	с	D				
A	Farmer tillage								
в	Strip tillage								
С	Ridge tillage								
D	Chisel plow								

(Snapp et al., 2002)

Taylor et al., 2011

Purdue On-Farm Research Trials – Plot Information												
Name:												
County:												
Soil series:	Drainage ¹ :											
Most recent soil		0	м	pI	ł	P	•	к	Ca	Mg	C	EC
sample results ³ :												
Soil sample date?	nple date?:				Lbs per acre or ppm?							
Previous crop:	op:			Tillage ² :								
Invididual plot length (ft):					Individual plot width (ft):							
Hybrid (Company and brand):												
Planting date:	te:				Seeding rate:							
Harvest date:	e:				Header width (ft):							
Yield monitor?	r?YesNo				If yes, equipped w/ GPS? Yes!				No			

t http://www.agry.purdue.edu/ext/ofr

Adaptability analysis

- Regression approach to evaluate performance of technologies across a range of environments
- Average yield or edaphic factors provide an 'environmental index' (Hildebrand and Russell, 1996)
- Calories produced can be used to compare technologies (Snapp, 2002)

Calories per technology vs average calories per farmer trial site 1997/98 (n=67)

G by E Key Points

- Choose experimental design
- Embrace environmental variability
- Large number of on-farm sites required
- Keep it simple on-farm
- Document farmer assessment, ranking or rating

Gonsolves et al., 2005

Resources

- Participatory Plant Breeding Tool Kit, Zystro, Shelton & Snapp. In review www.seedalliance.org
- Quantifying farmer evaluation of technologies.
 Snapp, 2002. <u>www.cimmyt.org</u>
- Systems Research Drinkwater In press www.southernsare.org/News-and-Media/Blog/Why-Systems-Research
- Weltzien and Christinck. 2008. Participatory breeding: Developing Improved and relevant crop varieties with farmers. In: Ag Systems, Snapp & Pound, Academic Press
- SARE On-farm experiments grants & resources www.sare.org

Contact: snapp@msu.edu

