USDA

Recipe for Flavorful Tomatoes: Heat Before Chilling

USDA Agricultural Research Service - Thu, 05/07/2015 - 07:01
Recipe for Flavorful Tomatoes: Heat Before Chilling / May 7, 2015 / News from the USDA Agricultural Research Service

Read the magazine story to find out more.

 Ripe tomatoes on the vine.  Link to photo information
Briefly heating tomatoes in warm water before chilling them for shipping or storing can help improve their taste, according to new research from ARS chemist Jinhe Bai. Click the image for more information about it.


For further reading

Recipe for Flavorful Tomatoes: Heat Before Chilling

By Dennis O'Brien
May 7, 2015

A U.S. Department of Agriculture (USDA) chemist in Florida has found a way to help tomato producers improve the taste of their tomatoes. The process is simple—just immerse them briefly in warm water to heat them.

Tomatoes are often picked green and then stored at low temperatures during and after transport to slow ripening. They are then ripened at about 68 °F before being placed on store shelves. That process makes them easier to ship and extends their shelf life. Jinhe Bai, who is with the USDA’s Agricultural Research Service (ARS) in Fort Pierce, wondered if the chilling was why “supermarket tomatoes” often taste bland. ARS is USDA’s chief intramural scientific research agency.

Bai and his colleagues harvested 120 standard “Florida 47” variety tomatoes and subjected 30 tomatoes each to one of four treatments: applying heat only, chilling (to the industry standard of 41 °F), heating prior to chilling, and keeping them at room temperature (controls). For the heat treatment, the tomatoes were placed in 125 °F water for 5 minutes. Like commercially produced tomatoes, tomatoes in the study were ripened at 68 °F after being exposed to the temperature treatments.

Samples of each group were cut and placed into sealed containers. The containers were opened less than an hour later, and the tomatoes were rated for flavor by 21 volunteers, based on the aromas released. The study was designed to evaluate fruit aroma so only the odors were assessed to eliminate bias from taste and “mouth feel.” The researchers also used gas chromatography-mass spectrometry to identify levels of 12 key volatile aroma compounds known to give tomatoes their flavor.

The results show that applying the heat treatment to mature green tomatoes, before they are chilled and shipped, stemmed the loss of several flavor volatiles known to give fruity and floral scents to foods as diverse as citrus and saffron. The heated-then-chilled tomatoes also had more flavor volatiles than the tomatoes that were only chilled: 14 out of 21 panelists could detect more tomato aroma.

It doesn’t help to heat and chill a ripe tomato purchased off a store shelf, Bai says. The heating and chilling process should be applied when the tomatoes are still green. But the treatment does benefit tomatoes that are first beginning to turn red, which is known as their “breaker stage.” The study was published online in LWT-Food Science Technology in January 2015.

Read more about this research in the May 2015 issue of AgResearch magazine.

Categories: USDA

Newly Named Bacteria Help Honey Bee Larvae Thrive

USDA Agricultural Research Service - Wed, 05/06/2015 - 06:06
Newly Named Bacteria Help Honey Bee Larvae Thrive / May 6, 2015 / News from the USDA Agricultural Research Service

Read the magazine story to find out more.

 Honey bee larvae in artificial cells on the right; capped artificial cells on the left where larvae become pupae. Link to photo information
ARS scientists have recently found new species of bacteria that appears to help honey bee larvae survive better, in laboratory studies. Click the image for more information about it.


For further reading

Newly Named Bacteria Help Honey Bee Larvae Thrive

By Kim Kaplan
May 6, 2015

U.S. Department of Agriculture (USDA) scientists have identified a bacterium that appears to give honey bee larvae a better chance of surviving to become pupae.

Molecular biologist Vanessa Corby-Harris and microbial ecologist Kirk E. Anderson at the Carl Hayden Bee Research Center in Tucson, Arizona, have named the new species Parasaccharibacter apium. The bee research center is part of the Agricultural Research Service, USDA’s chief intramural scientific research agency.

Honey bees have been under nearly constant and growing pressures from a whole host of stressors—diseases, poor nutrition, sublethal effects of pesticides and many others, especially for the last 30 years. It has been known that a number of different bacteria live within adult bees and in the hive, and scientists have been studying if and how these bacteria help deal with some of these stresses.

This is the first bacteria found to offer a benefit to bee larvae. In laboratory experiments, bee larvae fed P. apium had about an average of 30 percent better survival compared to those fed a sterile control.

How P. apium confers this survival advantage to the larvae is not yet known, according to Corby-Harris.

So far, the researchers have found P. apium only in honey bees and their hives. While P. apium found in honey bee hives is a distinct and new species from any previously identified, it has very close, naturally occurring relatives found in the nectar of many flowers, including cactus flowers, daisies, thistles and apple blossoms.

The genome of P. apium has been sequenced and they are beginning to dissect the functional properties that distinguish flower-living Acetobacteraceaefrom those that have coevolved with the honey bee hive. Pinpointing these ecological differences will be key to understanding the function of P. apium in honey bee hives, Anderson explained.

With minimal sampling effort, P. apium was found in nearly every one of the healthy managed bee colonies examined by the researchers. A future study will explore the abundance of P. apium in weak or struggling managed bee colonies.

While the mechanism by which the bacteria benefit the larvae remains to be studied, the importance is clear enough that Corby-Harris and Anderson are already field testing its use along with a number of other bacteria that may benefit the pollination and honey-production industry as potential management tools.

Read more about this research in the May 2015 issue of AgResearch magazine.

Categories: USDA

New Fruit Fly Lure Developed from Pests Favorite Scent

USDA Agricultural Research Service - Wed, 04/29/2015 - 07:38
New Fruit Fly Lure Developed from Pest’s Favorite Scent / April 29, 2015 / News from the USDA Agricultural Research Service
Read the magazine story to find out more.

 A melon fruit fly on a squash. Link to photo information
A new lure developed by ARS scientists based on cucumber aromas may help provide better control of melon fruit flies, one of four non-native fruit fly species that cost Hawaii's fruit and vegetable growers up to $15 million in losses annually and threatens the mainland United States. Click the image for more information about it.


For further reading

New Fruit Fly Lure Developed from Pest’s Favorite Scent

By Jan Suszkiw
April 29, 2015

Ongoing development and testing of a new melon fruit fly lure derived from cucumbers may lead to improved monitoring and control of this costly agricultural pest. That’s the goal of U.S. Department of Agriculture (USDA) scientists who developed the lure in studies at the USDA Agricultural Research Service’s Tropical Crop and Commodity Protection Research Unit in Hilo, Hawaii.

In Hawaii, the melon fly, Bactrocera cucurbitae, is one of four non-native tephritid fruit fly species that cause up to $15 million annually in direct losses to the state’s fruit and vegetable crops. B. cucurbitae is also considered a quarantine pest in the mainland United States and inflicts significant agricultural losses in other regions of the world.

The use of attractants to monitor adult fly numbers and movements plays a critical role in Hawaiian growers’ implementation of area-wide approaches to manage the 6- to 8-millimeter-long pest. These tactics include sanitation measures like destroying infested fruit and using trap crops.

Currently, two types of products are used: liquid protein baits and male-only lures. However, more accurate monitoring and better population control can be achieved if female flies can also be attracted, says entomologist Eric Jang, who leads the Hilo research unit.

In studies there, Jang and colleagues used a procedure called “gas-chromatograph electro-antennogram analysis” to measure how strongly melon flies responded to different blends of 31 volatile compounds emitted from freshly puréed cucumber, among the pest’s favorite hosts. From this analysis, they initially identified and tested a nine-compound blend that proved attractive to female flies but later focused on a seven-compound blend that worked even better when formulated as a dry bait.

During outdoor trials in Hawaiian papaya fields and in Taiwan with sponge gourd, 100 milligrams of the dried synthetic cucumber blend captured more melon fruit flies than both the protein bait and male-only lures. The blend also lasted as long as the other two products when the dosage was increased to 300 milligrams.

Read more about the lure in the April 2015 issue of AgResearch magazine. ARS is USDA’s chief intramural scientific research agency.

Categories: USDA

New Issue of Healthy Animals Now Online

USDA Agricultural Research Service - Tue, 04/28/2015 - 12:21
New Issue of Healthy Animals Now Online / April 28, 2015 / News from the USDA Agricultural Research Service

 Healthy Animals icon. Link to latest issue.
Click the image for latest issue.

New Issue of Healthy Animals Now Online

By Sandra Avant
April 28, 2015

The Agricultural Research Service (ARS) today posted a new issue of Healthy Animals. This semi-annual online newsletter compiles ARS news and expert resources on the health and well-being of agricultural livestock, poultry and fish.

Twice a year, one article in Healthy Animals focuses on a particular element of ARS animal research. The current issue focuses on improving Newcastle disease vaccines and more stringent methods to evaluate them.

Other research highlighted in this issue includes:

  • Swatting Stable Flies: ARS scientists are trapping stable flies that are pestering zoo animals.
  • Canine Bug Detectors: Dogs are being used to sniff out stink bugs indoors and outdoors.
  • Goodbye Fish Egg Fungus: A compound used to disinfect wastewater and sterilize items for hospitals and the food industry can kill fungus on catfish eggs.

Professionals interested in animal health issues might want to bookmark the site as a resource for locating animal health experts. An index lists ARS research locations covering 70 animal health topics. These range from specific diseases, such as Lyme disease, to broad subjects such as nutrition or parasites.

The site also provides complete contact information for the 25 ARS research groups that conduct studies aimed at protecting and improving farm animal health.

To receive an e-mail alert about each issue's online posting, contact Sandra Avant, ARS Information Staff, or sign up online.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture.

Categories: USDA

New Berries from ARS

USDA Agricultural Research Service - Wed, 04/22/2015 - 07:01
New Berries from ARS / April 22, 2015 / News from the USDA Agricultural Research Service

 Two ripe red and two immature strawberries on the vine of Sweet Sunrise, an ARS cultivar. Link to photo information
Sweet Sunrise strawberry is new high-yielding, June-bearing cultivar from the ARS breeding program in Corvallis, Oregon. Click the image for more information about it.


For further reading

New Berries from ARS

By Sharon Durham
April 22, 2015

Two new berries have been developed thanks to U.S. Department of Agriculture (USDA) scientists at the Horticultural Crops Research Unit in Corvallis, Oregon, and their collaborators.

Berries of all types are wonderful additions to a healthy diet, providing nutrients, fiber and flavor. Sweet Sunrise (U.S. PP 25,223) is a new strawberry cultivar from the Corvallis breeding program, which is led by Agricultural Research Service (ARS) plant geneticist Chad Finn. This strawberry was released in cooperation with the Oregon Agricultural Experiment Station (OAES) and Washington State University’s Agricultural Research Center.

ARS is the USDA’s chief intramural scientific research agency.

Sweet Sunrise is a high-yielding cultivar that ripens in June. It produces large, firm attractive fruit having excellent quality. According to Finn, Sweet Sunrise was high-yielding in every trial and location. Yields are comparable to, or higher than, those of other recent releases such as Charm, Valley Red, and Sweet Bliss or the industry standards Tillamook, Totem, and Hood. In all evaluations, Sweet Sunrise was rated excellent and comparable to Totem for commercial processors.

Finn also developed Columbia Star (U.S. patent applied for), a thornless, trailing blackberry cultivar from the same breeding program as Sweet Sunrise. Columbia Star was released in 2013 in cooperation with OAES.

The new blackberry is a high-quality, high-yielding, machine-harvestable blackberry with firm, sweet fruit that when processed is similar in quality to, or better than, fruit from the industry standards Marion and Black Diamond.

Both of these new berry cultivars will be good additions to the fresh- and processed-fruit markets, according to Finn.

Read more about this research in the April issue of AgResearch magazine.

Categories: USDA

USDA Scientists, International Colleagues Sequence Upland Cotton Genome

USDA Agricultural Research Service - Tue, 04/21/2015 - 12:03
USDA Scientists, International Colleagues Sequence Upland Cotton Genome / April 21, 2015 / News from the USDA Agricultural Research Service

 Upland cotton boll.
ARS scientists and their partners have sequenced the genome of Texas Marker-1, the genetic standard for upland cotton, the world's most widely cultivated and genetically complex species of Gossypium. Photo courtesy of Russell Kohel, ARS (retired).


For further reading

USDA Scientists, International Colleagues Sequence Upland Cotton Genome

By Dennis O'Brien
April 21, 2015

Resulting "roadmap" could help improve yields, fiber quality and plant resilience

WASHINGTON, April 21, 2015U.S. Department of Agriculture (USDA) scientists and their partners have sequenced the genome of the world's most widely cultivated and genetically complex species of cotton, a milestone that will make it easier to address increasing threats to cotton by tapping into its natural defenses. The results were published today in two Nature Biotechnology reports.

Sequencing the genome of Upland cotton (Gossypium hirsutum) will help breeders develop varieties of cotton that are better equipped to combat the pests, diseases and higher temperatures and droughts expected to accompany climate change. Cotton growers have experienced a plateau in yields since the early 1990s, and most commercial varieties lack genetic diversity, making cotton vulnerable to natural threats. The findings will help researchers and breeders in the years ahead develop cotton varieties with improved fiber qualities, higher yields and more tolerance to heat, drought and diseases anticipated due to climate change. Cotton is grown on 12 million acres in 17 states and is a $6 billion crop in the United States.

"There is a vast, untapped reservoir of genes in wild cotton plants that could offer us stronger and more effective defenses to the numerous challenges faced by cotton growers. Sequencing of a genetic standard in cotton gives us the roadmap to identify and tap into that reservoir of genetic variability," said Chavonda Jacobs-Young, administrator of the USDA's Agricultural Research Service (ARS). ARS is USDA's principal intramural scientific research agency.

The studies are the result of nearly a decade of international collaboration. ARS scientists Richard Percy and Russell Kohel (retired) are coauthors and John Yu is corresponding author of one publication. They are based in College Station, Texas. ARS scientist Brian Scheffler, based in Stoneville, Mississippi, is a coauthor of the other. The two teams sequenced the genome of the genetic standard of Upland cotton, Texas Marker-1, which is often used in studies and in developing new genetic lines.

Upland cotton is the result of millions of years of evolution and thousands of years of domestication. The sequencing efforts were made possible because several of the scientists involved in today's studies recently sequenced the two "parent" species of most commercial cotton varieties—an Old World cultivated cotton and a New World wild cotton.

The results will allow scientists to analyze two sets of extensive DNA data, compiled independently of each other, compare the results and exploit cotton's genetic diversity by tapping into the potential of genes found in the 10,000 accessions of exotic and wild cotton plants in the ARS Cotton Germplasm Collection in College Station, Texas.

The papers, with a list of the contributing authors, can be found at:

http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3207.html

http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3208.html

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of promoting American agriculture by conducting cutting-edge research and expanding markets at home and abroad.

Categories: USDA

New Procedure to Test NDV Vaccines

USDA Agricultural Research Service - Wed, 04/15/2015 - 10:32
New Procedure to Test NDV Vaccines / April 15, 2015 / News from the USDA Agricultural Research Service
Read the magazine story to find out more.

 Chickens. Link to photo information
ARS scientists have improved methods for evaluating vaccines against Newcastle disease virus, which could lead to better protection from this virulent poultry disease. Click the image for more information about it.


For further reading

New Procedure to Test NDV Vaccines

By Sandra Avant
April 15, 2015

U.S. Department of Agriculture (USDA) scientists have developed an improved Newcastle disease virus (NDV) vaccine evaluation procedure that could be used to select better vaccines to treat the disease.

Newcastle disease, one of the most important poultry diseases worldwide, can cause severe illness in chickens and other birds. Severe, or virulent, strains rarely occur in poultry species in the United States, but they are regularly found in poultry in many foreign countries.

Available commercial NDV vaccines perform well in chickens infected with virulent NDV under experimental conditions. They also perform well under field conditions where virulent virus is not common. However, they often fail in countries where virulent viruses are endemic.

At the Agricultural Research Service's (ARS) Southeast Poultry Research Laboratory (SEPRL) in Athens, Georgia, microbiologist Claudio Afonso and veterinary medical officer Patti Miller have updated the traditional vaccine evaluation method, which does not compare vaccines or take into account suboptimal field conditions.

Under perfect conditions, vaccines should work, but conditions are not always perfect in the field, according to Miller. Chickens sometimes get less than the required vaccine dose and don't always have the minimum amount of time required to develop an optimum immune response.

The improved vaccine-evaluation procedure compares vaccines made using genes from the same viral strain-or genotype-that the birds are exposed to in the field to vaccines made with a strain that differs from the virus birds are exposed to.

Using the improved procedure, scientists inoculated chickens with different vaccine doses before exposure to a high dose of virulent NDV. Birds given the genotype-matched vaccine had reduced viral shedding, superior immune responses, reduced clinical signs, and increased survival than the birds vaccinated with a different-genotype vaccine. By using genotype-matched vaccines, viral shedding and death were significantly reduced.

ARS is USDA's principal intramural scientific research agency, and this research supports the USDA priority of promoting international food security.

Read more about this work in the April 2015 issue of AgResearch magazine.

Categories: USDA

Fast New Approach to Formulating Pest-Killing Fungi on Tap

USDA Agricultural Research Service - Wed, 04/08/2015 - 07:39
Fast New Approach to Formulating Pest-Killing Fungi on Tap / April 8, 2015 / News from the USDA Agricultural Research Service
Read the magazine story to find out more.

 ARS microbiologist Mark Jackson examining a fungal culture in a glass container. Link to photo information
ARS microbiologist Mark Jackson and his colleagues have improved mass-production of beneficial fungi so they can be more effective and more economical biopesticides. Click the image for more information about it.


For further reading

Fast New Approach to Formulating Pest-Killing Fungi on Tap

By Jan Suszkiw
April 8, 2015

Technological advances by U.S. Department of Agriculture (USDA) scientists are continuing to improve the way beneficial fungi are formulated for use as biopesticides.

Traditionally, biopesticide makers have cultured beneficial species of Beauveria, Isaria, Metarhizium and other fungi on moistened grains like rice or other solid substrates to coax them into forming specialized spores called "conidia." These conidia are then harvested and formulated into biopesticide products, which can be applied to field- or greenhouse-grown crops as alternatives to synthetic pesticides or used in conjunction with them to delay the pests' development of insecticide resistance.

Over the past decade, however, microbiologist Mark Jackson and colleagues at USDA's Agricultural Research Service (ARS) have experimented with the use of liquid culture fermentation (LCF), an approach that's enabled them to mass-produce stable, effective spore forms called "blastospores" and resting structures such as "microsclerotia."

The researchers' studies have shown that microsclerotia are especially durable, long-lasting during storage, and effective as bioinsecticides and bioherbicides. LCF has also proven to be faster and more economical to use, yielding blastospores or microsclerotia in two to three days versus the ten to fourteen days needed to produce conidia using the traditional culture methods, says Jackson. He is with the ARS National Center for Agricultural Utilization Research in Peoria, Illinois. Replacing hydrolyzed casein and other expensive nitrogen sources with low-cost cottonseed flour also reduces production media costs by 80-90 percent, he adds.

Jackson's recent collaborations with visiting scientists Gabriel Mascarin (Brazilian Agricultural Research Corporation, a.k.a. "EMBRAPA") and Nilce Kobori (National Council for Scientific and Technological Development) showed that LCF can also be a cost-effective way to produce spores of U.S. and Brazilian strains of Beauveria, Isaria, and Trichoderma fungi.

In trials, the blastospores proved more effective than conidia generated by commercial production methods. For example, blastospores from LCF cultures of Beauveria killed silverleaf whitefly nymphs 25 percent faster than the conidia. Fewer blastospores were also required. Their studies also demonstrated, for the first time, that under appropriate LCF conditions, Trichoderma can form microsclerotia suitable for use as a seed coating or soil-incorporated granules to guard against plant diseases.

Read more about their findings in the April issue of AgResearch magazine. ARS is USDA's principal intramural scientific research agency.

Categories: USDA

U.S. National Arboretum To Re-Open to the Public Seven-Days A Week

USDA Agricultural Research Service - Thu, 04/02/2015 - 10:41
U.S. National Arboretum To Re-Open to the Public Seven-Days A Week / April 2, 2015 / News from the USDA Agricultural Research Service
U.S. National Arboretum To Re-Open to the Public Seven Days A Week

Schedule Resumption Possible Through Friends of the National Arboretum Donations

By Sharon Durham
April 2, 2015

WASHINGTON, April 2, 2015 — On April 14, the U.S. Department of Agriculture's (USDA) U.S. National Arboretum (USNA) will once again be open to the public seven days a week, its original operating schedule. USNA continued a full research schedule but reduced the public schedule by three days a week in 2013 due to reduced funding, closing to the public Tuesday through Thursday. The Arboretum is operated by the Agricultural Research Service (ARS), USDA's chief intramural scientific research agency.

"We are very pleased that the U.S. National Arboretum will return to its normal operating schedule on April 14," said Chavonda Jacobs-Young, ARS Administrator. "In addition to the vital plant research conducted there, the Arboretum is also a source of relaxation and enjoyment for the public and visitors to Washington, D.C. We are thankful for the support of the Friends of the National Arboretum in helping us to restore the Arboretum's normal operating schedule. It is a great example of well-functioning private/government partnership benefiting the public."

Friends of the National Arboretum (FONA) is the principal private, nonprofit partner of USNA. FONA began raising funds following the 2013 schedule reduction to facilitate resuming USNA's seven-day schedule. The funds raised by FONA will help pay for custodial, security, and public information services for the three days of operations over the next three years.

The 446-acre Arboretum is USDA's research and education facility and a living museum. The Arboretum enhances the economic, environmental, and aesthetic value of ornamental and landscape plants through long-term, multi-disciplinary research, conservation of genetic resources, and interpretative gardens and exhibits.

It is dedicated to serving the public and improving our environment by developing and promoting improved floral and landscape plants and new technologies through scientific research, education programs, display gardens, and germplasm conservation.

This year, the Arboretum is also home to a nesting pair of bald eagles, the first since 1947. Staff first noticed the nesting pair in early January on the south side of Mount Hamilton, in the Arboretum's Azalea Collection, watching the pair make trips back and forth to the nest site. The eagles' behavior changed towards the end of January, when one started sitting on the nest at all times, while the other searched for food to feed its mate. This was an indication that the pair was now caring for eaglets. It is unknown at this time how many eaglets are in the nest.

The USNA is taking steps to protect the nesting pair of eagles and minimize disturbances. People, noise, and related distractions in the vicinity of a bald eagle nest can cause the nesting pair to abandon their nest and eaglets. USNA has restricted access to an area within approximately 660 feet around the nesting site during the critical nesting period, ending around mid-June.

Each season provides new experiences for visitors. Spring arrives with the appearance of woodland wildflowers. From magnolia blossoms to miniature daffodils to cherry blossoms, fragrance graces the grounds. Summer brings daylilies and crape myrtles, welcoming the heat of summer with showy, resilient blooms. In the fall, tree leaves transition from summer green to a range of rich yellows of tulip poplar and hickory to the bright red of black gum and the purplish red of sweet gum and dogwood. While many think of winter as cold and remote, it also brings calm and quiet. Snow and ice transform the gardens into a jeweled landscape. The 'Sparkleberry' hollies (developed by scientists at the USNA) sparkle with brilliant red berries.

There are a number of specialized collections at USNA including the Asian Collections, Fern Valley, The Native Plant Collection, and the ever-popular Azalea Collections. The public is encouraged to visit the USNA Web site to learn more about hours of operation, visitor services, collections, and upcoming USNA events and activities.

Categories: USDA
Syndicate content